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Extended abstract in Polish

Poniżej przedstawiono rozszerzone streszczenie rozdzia lów rozprawy doktorskiej
”
Mo-

delowanie procesów samoorganizacji metoda֒ cza֒stek”.

1 Wprowadzenie

W ostatnich latach, badania w wielu dziedzinach nauki i inżynierii sa֒ coraz bardziej
ukierunkowane na wyjaśnianie lub wykorzystanie ogólnych lub specyficznych zjawisk
powstaja֒cych w rezultacie oddzia lywań pomie֒dzy wieloma jednorodnymi lub niejedno-
rodnymi elementami systemu. Te oddzia lywania moga֒ być neutralne, kooperatywne
lub antagonistyczne i zwykle prowadza֒ do z lożonego zachowania systemu jako ca lości.
Tymi dziedzinami sa֒ biologia, socjologia, informatyka, automatyka, robotyka i ogólnie
te dziedziny gdzie badane systemy sk ladaja֒ sie֒ z wielu oddzia luja֒cych obiektów.

Powstaje pytanie jak modelować zachowanie systemu sk ladaja֒cych sie֒ z wielu od-
dzia luja֒cych komponentów. Klasyczny aparat matematyczny ma ograniczona֒ użyte-
czność ponieważ modele matematyczne sa֒ zbyt z lożone lub nieadekwatne. Podsta-
wowym narze֒dziem używanym w badaniach sa֒ tzw. modele indywiduowe lub agentowe
lub metody cza֒stek. Podstawowa֒ idea֒ leża֒ca֒ u podstaw tych podej́sć jest specyfikacja
lokalnych regu l zachowania obiektów, w la֒czaja֒c w to regu ly opisuja֒ce interakcje z in-
nymi obiektami i naste֒pnie symulacja komputerowa ewolucji systemu sk ladaja֒cego sie֒
z wielu takich obiektów. Podczas symulacji powstaje z lożone, globalne zachowanie mo-
delu, jako rezultat lokalnych oddzia lywań elementów.

Zaprojektowanie i implementacja środowiska symulacyjnego jest g lównym celem
niniejszej rozprawy.

Środowisko symulacyjne, nazwane DigiHive ukierunkowane jest na modelowanie
systemów, których zachowanie sie֒ jest w istotny sposób zwia֒zane z ruchem i
wzajemnym oddzia lywaniem swoich elementów, a w szczególności systemów z lożonych,
przejawiaja֒cych sie֒ wyste֒powaniem w nich procesów wzrostu, samoreprodukcji,
samoorganizacji i samomodyfikacji. DigiHive jest przeznaczone do modelowania i
wykrywania podstawowych ogólnych w lasności systemów z lożonych z wielu elementów,
a w mniejszym stopniu na modelowanie konkretnych procesów fizycznych, chemicznych
czy biologicznych.

W środowisku DigiHive zdefiniowanym w przestrzeni dwuwymiarowej poruszaja֒
sie֒ i zderzaja֒ cza֒steczki. Na skutek zderzeń cza֒steczki moga֒ losowo  la֒czyć sie֒ w
kompleksy cza֒steczek lub kompleksy cza֒steczek – rozpadać. Na wyższym poziomie
oddzia lywań, kompleksy cza֒steczek moga֒ selektywnie oddzia lywać na inne cza֒steczki,
 la֒cza֒c je lub rozrywaja֒c wia֒zania. Rodzaj oddzia lywania zapisany jest w strukturach
kompleksów w specjalnie zdefiniowanym je֒zyku. Ta cecha otwiera nieograniczone
możliwości modelowania zachowań systemów z lożonych - systemów, elementy których
moga֒ wzajemnie sie֒ modyfikować, zmieniaja֒c swoje struktury a zatem swoje funkcje.
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To z kolei może prowadzić do wy laniania sie֒ nowych funkcji i interakcji, co stanowi
zasadnicza֒ nowość zaprojektowanego środowiska. W lasności środowiska stanowia֒ model

”
sztucznego świata”, w którym moga֒ być badane za pomoca֒ symulacji komputerowych:

podstawowe mechanizmy procesów biologicznych, interakcji żywych organizmów lub
agentów softwarowych.

System umożliwia symulacje֒ ewolucji różnych struktur, w szczególności samorepro-
dukuja֒cych sie֒

”
organizmów” bez pocza֒tkowo określonych kryteriów dopasowani (co

jest wymaganiem w standardowych algorytmach ewolucyjnych). Kryteria sa֒ niejawnie
zdefiniowane w regu lach (

”
fizyce”) dzia lania środowiska.

Jednym z paradygmatów wspó lczesnej sztucznej inteligencji jest dzia lanie agentów
steruja֒cych swoim zachowaniem przy pomocy abstrakcyjnych

”
odcieleśnionych” ma-

nipulacji symbolami. Jest to przeciwieństwem modeli cybernetycznych rozwijanych w
latach pie֒ćdziesia֒tych XX wieku. W ostatnich latach pojawiaja֒ sie֒ przekonania, że w
pe lni inteligentne systemy powinny posiadać inteligencje֒

”
ucieleśniona֒” w swojej w la-

snej budowie, analogicznie jak w żywych organizmach. Podejmowane sa֒ próby budowy
takich systemów. DigiHive może być widziane jako próba realizacji

”
ucieleśnienionej” in-

teligencji – struktura kompleksów cza֒steczek jest interpretowana jako program zmieni-
aja֒cy inne kompleksy.

Funkcje zakodowane w strukturach kompleksów sa֒ wyrażane w specjalnie zapro-
jektowanym je֒zyku podobnym do Prologu. Ważna֒ cecha֒ je֒zyka jest w lasność, że ma le
zmiany w kodzie programu zwykle powinny prowadzić do wzgle֒dnie ma lych zmian w
zachowaniu programu. Taka w lasność je֒zyka jest kluczowa podczas symulacji sponta-
nicznego powstawania z lożonych struktur.

Stosuja֒c środowisko DigiHive zaprojektowano i przeprowadzono eksperymenty w
dwu g lównych kierunkach:

1. Symulowanie zjawisk emergentnych – samoorganizacja cza֒steczek rozpoczynaja֒ca
sie֒ od losowego stanu pocza֒tkowego

2. Symulowanie uniwersalnego konstruktora – co stanowi pierwszy krok do badania
dynamiki różnorodnych strategii samoreprodukcji

1.1 Tezy pracy

Przyje֒to naste֒puja֒ce tezy pracy:

• Zaprojektowane i zaimplementowane środowisko DigiHive jest oryginalnym
narze֒dziem s luża֒cym do symulowania procesów z lożonych. DigiHive umożliwia
symulowanie różnych systemów samoreprodukuja֒cych sie֒ w losowym środowisku

• Je֒zyk zakodowany w strukturach cza֒steczek o w laściwości, że niewielkie zmiany
w kodzie programu prowadza֒ do niewielkich zmian w zachowaniu programu jest
istotnym czynnikiem podczas symulacji spontanicznego wy laniania sie֒ struktur
z lożonych

2 Metody cza֒stek

Rozdzia l 2 zawiera krótki przegla֒d metod cza֒stek, ze szczególnym uwzgle֒dnieniem
metod abstrakcyjnych. Metody cza֒stek, używane podczas modelowania procesów
fizycznych to m.in.: dynamika molekularna, SPH, gaz siatkowy itd. Jako metody
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abstrakcyjne przedstawiono: automaty komórkowe, sztuczna֒ chemie֒ oraz modelowanie
agentowe.

3 Modelowanie systemów z lożonych

Rozdzia l 3 zawiera przegla֒d zagadnień zwia֒zanych z modelowaniem procesów z lożonych
rozpatrywanych w ramach dziedziny sztucznego życia.

3.1 Sztuczne życie

Rozdzia l 3.1 rozprawy zawiera przegla֒d zagadnień rozpatrywanych w ramach sztu-
cznego życia. Sztuczne życie jest dziedzina֒ symulowania procesów podobnych do wys-
te֒puja֒cych w systemach biologicznych, w szczególności symulowania procesów samore-
produkcji, samoorganizacji i samomodyfikacji czyli tego co sk lada sie֒ na podstawowe
procesy życiowe i ich ewolucje֒. Mówia֒c obrazowo do dziedziny sztucznego życia nie
zalicza sie֒ np. opisanie równaniem różniczkowym procesu wymiany gazów w p lucach,
natomiast do tej dziedziny zaliczyć można symulacje֒ automatu, który korzystaja֒c z
doste֒pnych elementów potrafi skonstruować swoja֒ kopie. Do zastosowań zwia֒zanych z
symulacjami z dziedziny sztucznego życia szczególnie przydatne okazuja֒ sie֒ abstrak-
cyjne metody cza֒stek.

W artykule programowym pierwszej konferencji poświe֒conej zagadnieniom sztu-
cznego życia w roku 1987, Langton sformu lowa l naste֒puja֒ce postulaty dotycza֒ce
środowiska modelowania systemów biologicznych:

• powinno sk ladać sie֒ z populacji prostych programów lub specyfikacji;

• nie powinien w nim wyste֒pować program steruja֒cy pozosta lymi programami;

• każdy program powinien zawierać opis reakcji jednostki na zaistnia le lokalne
sytuacje w swoim otoczeniu w la֒czaja֒c w to spotkania z innymi jednostkami;

• w systemie nie powinno być regu l steruja֒cych jego globalnym zachowaniem sie֒.

3.2 Modelowanie procesów samoreprodukcji

Badania nad systemami samoreprodukuja֒cymi sie֒ zapocza֒tkowane zosta ly w latach
50. XX wieku pionierskimi pracami von Neumanna (opisane w rozdziale 3.2.1). Mia ly
one g lównie charakter poznawczy i teoretyczny, ale ostatnio w zwia֒zku z gwa ltownym
rozwojem nanotechnologii, dostrzega sie֒, chociaż jeszcze bardzo odleg le, możliwości
realizacji fizycznych takich systemów.

W modelu von Neumanna kluczowa֒ role֒ odgrywa tzw. uniwersalny konstruktor.
Uniwersalny konstruktor, oznaczony przez A, jest maszyna֒ tworza֒ca֒ dowolny obiekt X
na podstawie jego opisu φ(X). Latwo zauważyć, że dostarczaja֒c konstruktorowi opis
jego samego tj. przyjmuja֒c że X = A konstruktor utworzy kopie֒ samego siebie. W celu
uzyskania pe lnego systemu samoreprodukuja֒cego, konieczne jest również powielenie
opisu konstruktora φ(A). W tym celu wprowadza sie֒ maszyne֒ B umożliwiaja֒ca֒
skopiowanie opisu. La֒cza֒c maszyne֒ A i B oraz dodatkowa֒ maszyne֒ C steruja֒ca֒
kolejnościa֒ wykonania uzyskujemy nowa֒ maszyne֒ A + B + C. Maszyna A + B + C
uzupe lniona o swój opis φ(A + B + C) stanowi pe lny system samoreprodukuja֒cy sie֒.

Szczegó lowy przegla֒d zagadnień zwia֒zanych z modelowaniem procesów samorepro-
dukcji zawiera rozdzia l 3.2.
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3.3 Modelowanie procesów samoorganizacji

Poprzez modelowanie procesów samoorganizacji w ramach rozprawy rozumiane sa֒
symulacje polegaja֒ce na obserwacji ewolucji systemu z zadanego stanu pocza֒tkowego.
W szczególności rozpatrywane jest zagadnienie spontanicznego powstawania systemu
samoreprodukuja֒cego sie֒ oraz ewolucji systemu zawieraja֒cego pocza֒tkowy zespó l
systemów samoreprodukuja֒cych sie֒ przy niezerowym prawdopodobieństwie zmian w
modelowanych strukturach na skutek zdarzeń losowych.

4 Przegla֒d istnieja֒cych środowisk

W rozdziale 4 zawarto przegla֒d środowisk s luża֒cych do modelowania procesów
opisanych w rozdziale 3. Środowiska podzielono na naste֒puja֒ce grupy:

• Klasyczne systemy agentowe: środowiska do szeroko rozumianego modelowania
zgodnego z paradygmatem modelowania agentowego. Wydzielono podgrupe֒
sztucznych ekosystemów tj. środowisk wzorowanych na modelach ekologii, gdzie
pojedynczy agent reprezentuje organizm biologiczny.

• Core worlds: środowiska wywodza֒ce sie֒ od programu Tierra, w których obserwuje
sie֒ interakcje ewoluuja֒cych programów komputerowych.

• Sztuczna fizyka: środowiska niskopoziomowe, wykazuja֒ce podobieństwo do metod
dynamiki molekularnej. Cecha֒ charakterystyczna֒ jest wbudowanie regu l uproszc-
zonej fizyki oraz modelowanie na poziomie pojedynczych cza֒stek.

5 Opis środowiska

Rozdzia l 5 zawiera szczegó lowy opis środowiska, w dodatku A opisano instrukcje֒
instalacji oraz korzystania ze środowiska.

Opisywane środowisko wykorzystuje niektóre za lożenia, wcześniejszego środowiska
Universum rozwijanego od po lowy lat osiemdziesia֒tych (skrócony opis zawiera rozdzia l
4.3.3).

5.1 Poziom pierwszy:
”
termodynamika”

Środowisko zdefiniowane jest w przestrzeni dwuwymiarowej o periodycznych warunk-
ach brzegowych. Podstawowymi obiektami środowiska sa֒ cza֒steczki i fotony. Cza֒steczki
sa֒ obiektami trwa lymi (nie sa֒ tworzone ani niszczone w trakcie symulacji) reprezen-
towanymi przez sześcioka֒ty o ustalonych wymiarach. Cza֒steczki wyste֒puja֒ w 256
różnych typach. Każdy typ charakteryzowany jest naste֒puja֒cymi w laściwościami: masa,
energia wia֒zań (energia potrzebna do rozerwania wia֒zania) oraz energia aktywacji
(minimalna energia potrzebna do zainicjowania reakcji). Poza wymienionymi cechami
sta lymi każda cza֒steczka jest charakteryzowana przez aktualne wartości pre֒dkości,
po lożenia i energii wewne֒trznej.

Podczas symulacji pomie֒dzy cza֒steczkami moga֒ powstawać wia֒zania – dwie lub
wie֒cej powia֒zanych cza֒steczek tworzy kompleks cza֒steczek. Cza֒steczki moga֒  la֒czyć sie֒
na kierunkach: góra (U) i dó l (D) tworza֒c stos. Cza֒steczki znajduja֒ce sie֒ na spodzie
stosu moga֒  la֒czyć sie֒ na kierunkach poziomych: pó lnoc (N), pó lnocny zachód (NW),
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Rys. 1: Przyk ladowe kompleksy: (a) stos cza֒steczek – widok z boku (b) kompleks
utworzony przez wia֒zania poziome – widok z góry. Sześcioka֒ty narysowane podwójna֒
linia֒ oznaczaja֒ stosy, czarne punkty oznaczaja֒ wia֒zania pomie֒dzy stosami

po ludniowy zachód (SW), po ludnie (S), po ludniowy wschód (SE) i pó lnocny wschód
(NE). Przyk ladowe wygla֒dy kompleksów przedstawia rysunek 1.

Wszystkie procesy w systemie sa֒ synchronizowane dyskretnym zegarem. Na
pocza֒tku każdego cyklu czasowego, po lożenie każdej cza֒steczki jest zmieniane odpowied-
nio do jej pre֒dkości. Jeżeli w trakcie ruchu dwie cza֒steczki, nie należa֒ce do tego samego
kompleksu, znajda֒ sie֒ w odleg lości mniejszej niż pewna ustalona wartość przyjmowane
jest, że dosz lo do zderzenia. Zderzenia cza֒steczek moga֒ być zarówno spre֒żyste jak i
niespre֒żyste.

Zderzenie spre֒żyste modelowane jest zgodnie z zasadami mechaniki klasycznej, przy
czym cza֒steczki traktowane sa֒ tu jako ko la o ustalonym promieniu. Podczas zderzenia
spre֒żystego zachowana jest zarówno energia kinetyczna jak i pe֒d cza֒steczek. Podczas
zderzenia niespre֒żystego pre֒dkości zderzaja֒cych sie֒ cza֒steczek staja֒ sie֒ równe. Wtedy
zachowany jest jedynie  la֒czny pe֒d cza֒steczek. Powstaja֒cy przy tym deficyt energii
kinetycznej zrekompensowany zostaje emisja֒ fotonu.

Fotony sa֒ obiektami nietrwa lymi przenosza֒cymi energie֒. Powstaja֒ w trakcie reakcji
rozpraszaja֒cych energie֒: zderzeń niespre֒żystych cza֒steczek, tworzenia wia֒zań pomie֒dzy
cza֒steczkami i spontanicznej redukcji energii wewne֒trznej cza֒steczki. Magazynuja֒ one
energie֒ tracona֒ przez cza֒steczki, dzie֒ki czemu energia ca lkowita środowiska podczas
symulacji pozostaje sta la. Fotony sa֒ modelowane jako punkty o zerowej masie,
poruszaja֒ce sie֒ z ustalona֒ pre֒dkościa֒.

Fotony moga֒ zderzać sie֒ z cza֒steczkami. Podobnie jak w przypadku zderzeń
cza֒steczek, zderzenia fotonu z cza֒steczka֒ moga֒ być zarówno spre֒żyste jak i niespre֒żyste.
Zderzenia spre֒żyste zmieniaja֒ jedynie kierunek fotonu, natomiast zderzenia niespre֒żyste
prowadza֒ do jednej z naste֒puja֒cych reakcji: odbicie cza֒steczki uderzonej przez foton
od cza֒steczki sa֒siedniej (znajduja֒cej sie֒ w odleg lości nie wie֒kszej niż pewna ustalona
wartość), utworzenie wia֒zania pomie֒dzy uderzona֒ cza֒steczka֒ a cza֒steczka֒ sa֒siednia֒,
zerwanie wia֒zania pomie֒dzy cza֒steczka֒ trafiona֒ a dowolna֒ cza֒steczka֒ zwia֒zana֒, ab-
sorpcja fotonu (konwersja energii fotonu w energie֒ wewne֒trzna֒ cza֒steczki).

Wszystkie wymienione reakcje musza֒ zachowywać ca lkowita֒ energie֒: jeżeli foton ma
zbyt ma la֒ energie֒ do zainicjalizowani reakcji, reakcja nie zachodzi. W przypadku gdy
energia fotonu jest wie֒ksza niż zużyta na przeprowadzenie reakcji lub reakcja oddaje
energie֒, po zakończeniu reakcji wygenerowany zostaje foton o energii zapewniaja֒cej
sta lość energii systemu.

Powyżej opisane w laściwości środowiska pozwalaja֒, poprzez ustawienie zerowego
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Rys. 2: Cza֒steczka i kompleks cza֒steczek rozpoznawany przez program z rys. 1 (a),
struktura po wykonaniu programu (b)

prawdopodobieństwa zderzeń niespre֒żystych, na przeprowadzenie symulacji procesów
zgodnych z mechanika֒ klasyczna֒ – jest to wtedy równoważne prostej dynamice moleku-
larnej. Z kolei ustawiaja֒c niezerowe prawdopodobieństwo zderzeń niespre֒żystych, w
środowisku pojawia֒ sie֒ fotony, co w konsekwencji prowadzi do powstawania różnych
z lożonych kompleksów na skutek losowego tworzenia i zrywania wia֒zań.

5.2 Poziom drugi:
”
biochemia”

Poza omówionymi powyżej interakcjami wynikaja֒cymi ze zderzeń cza֒steczek pomie֒dzy
soba֒ jak i zderzeń cza֒steczek z fotonami, w środowisku zachodza֒ oddzia lywania innego
rodzaju. Poszczególne kompleksy sa֒ zdolne do rozpoznawania specyficznych struktur
cza֒steczek znajduja֒cych sie֒ w ich otoczeniu (okra֒g o zdefiniowanym promieniu)
oraz selektywnego tworzenia i rozrywania wia֒zań pomie֒dzy cza֒steczkami. Funkcja
realizowana przez kompleks zakodowana jest przez typy i rozmieszczenie cza֒steczek
w kompleksie.

Funkcje kompleksów wyrażone sa֒ w opisanym poniżej je֒zyku, o strukturze
zbliżonej do je֒zyka Prolog. Wyste֒puja֒ w nim wy la֒cznie naste֒puja֒ce predykaty wbu-
dowane: program, search, action, structure, exists, bind, unbind, move,
not. Predykaty program, search, action, structure s luża֒ do organizowania
struktury programu. Natomiast funkcje rozpoznawania struktur i realizacje zmian
w środowisku pe lnia֒ predykaty: exists (selektywne rozpoznawanie cza֒steczek),
bind (utworzenie wia֒zania), unbind (rozrywanie wia֒zań) oraz move (przesuwanie
cza֒steczek). Pe lna֒ liste֒ predykatów we wszystkich dopuszczalnych wariantach zawiera
dodatek C.

Przyk ladowy program zosta l przedstawiony na List. 1. Jak można zauważyć
programu sk lada sie֒ z sekwencji dwóch predykatów search i action, przy czym
pierwszy z nich grupuje predykaty s luża֒ce do rozpoznawania struktur, natomiast drugi,
predykaty umożliwiaja֒ce manipulowanie rozpoznanymi cza֒steczkami.

Każdy predykat structure sk lada sie֒ z sekwencji wywo lań predykatu exists
oraz zanegowanego predykatu structure. Pozwala to na wykrycie określonej struk-
tury przy warunku nie wyste֒powania innych określonych struktur. W przyk ladowym
programie cza֒steczka o typie 10101010 jest inhibitorem reakcji. Jej wyste֒powanie
zablokowa loby zaj́scie przemiany.

Za pomoca֒ predykatu exists możliwe jest sprawdzenie istnienia cza֒steczki o
określonym typie (np. exists(00001111 ...)), sprawdzenie czy cza֒steczka jest
zwia֒zana z inna֒ cza֒steczka֒ na danym kierunku (np. bound to V2 in N, oraz czy
jest przylegaja֒ca do innej cza֒steczki (np. adjacent to V3 in N). Możliwe jest
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program():-
search(),
action().

search():-
structure(0).

structure(0):-
exists(000000xx mark V1),
exists(11111111 bound to V1 in N mark V2),
exists(00000000 mark V5),
not(structure(1)),
not(structure(2)).

structure(1):-
exists(11110000 bound to V2 in NW mark V3),
exists(11110000 bound to V3 in SW mark V4),
not(structure(3)).

structure(3):-
exists(00001111 bound to V4 in S).

structure(2):-
exists(10101010).

action():-
bind(V2 to V5 in SW).

Listing 1: Przyk ladowy program rozpoznaja֒cy i modyfikuja֒cy strukture֒ przedstawiona֒
na rys. 2

również oznaczenie cza֒steczki spe lniajacej określone kryteria jedna֒ z 15 etykiet, od V1
do V15 (np. exists(... mark V1)).

Przyk ladowo – polecenie: exists(11110000 bound to V2 in NW, mark V3)
oznacza: odszukaj cza֒steczke֒ o typie 11110000, zwia֒zana֒ na kierunku NW z cza֒steczka֒
identyfikowana֒ przez zmienna֒ V2 i zapamie֒taj wynik w zmiennej V3 (zmienna V3
be֒dzie od tego momentu identyfikowa la znaleziona֒ przez polecenie cza֒steczke֒).

Polecenia zgrupowane w predykacie action wykonuja֒ sekwencje poleceń umożli-
wiaja֒cych zmiane֒ istnieja֒cych wia֒zań oraz po lożeń cza֒steczek. Ze wzgle֒du na mody-
fikacje֒ w laściwości cza֒steczek, istotna jest kolejność w jakiej wyste֒puja֒ poszczególne
predykaty, odwrotnie niż w cze֒ści rozpoznaja֒cej cza֒steczki. W przyk ladowym pro-
gramie polecenie bind(V2 to V5 in SW) oznacza: po la֒cz cza֒steczke֒ identyfikowana֒
przez zmienna֒ V2 z cza֒steczka֒ identyfikowana֒ przez zmienna֒ V5 na kierunku SW.

W odróżnieniu od Prologu, sk ladnia je֒zyka nie determinuje jakie informacje
przekazywane sa֒ do poszczególnych predykatów. Przyje֒ta zosta la naste֒puja֒ca inter-
pretacja przekazywania parametrów: do predykatów search i action oraz g lównego
predykatu structure (w programie przyk ladowym: structure(0)) przekazy-
wana jest pe lna lista zmiennych, natomiast do pozosta lych predykatów structure
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przekazywane sa֒ tylko te zmienne które zosta ly użyte w predykacie nadrze֒dnym (tj.
zosta ly wyszczególnione w cze֒ści mark predykatu exists).

G lówna֒ idea֒ wprowadzonego je֒zyka funkcji kompleksów by lo uzyskanie w lasności
aby niewielkie zmiany w kodzie programu (tzn. w kompleksie cza֒steczek koduja֒cych
program) na ogó l prowadzi ly do ma lych zmian w algorytmach cze֒ści rozpoznaja֒cej
i wykonawczej programów. Taka w lasność je֒zyka jest podstawowa w przypadku
modelowania spontanicznego powstawania z lożonych struktur i ich dalszej ewolucji.
Brak takich w lasności by l przeszkoda֒ m.in. w przeprowadzaniu takich symulacji w
systemie Uniwersum (opis przyk ladowego eksperymentu w dodatku D).

W opisanym je֒zyku ma le zmiany w strukturze kompleksów cza֒steczek prowadza֒ do
usunie֒cia lub zmiany pewnych predykatów, co zazwyczaj prowadzi do zmian zdolności
rozpoznawczych programu, np. do redukcji jego precyzji.

Interpreter

Programy zakodowane w strukturach cza֒steczek sa֒ wykonywane przez specjalizowany
uproszczony interpreter Prologu. Bezpośrednio przed wykonaniem interpreter tworzy
liste֒ faktów o cza֒steczkach widzianych przez program.

Jeżeli cześć rozpoznaja֒ca strukture֒ i cze֒ść wykonawcza programu powiod ly sie֒ oraz
bilans energii przemian jest dodatni interpreter zmienia odpowiednio stan środowiska
i wykonanie sie kończy. W przeciwnym wypadku wszystkie kierunki poziome zostaja֒
przesunie֒te o ka֒t 600 i program wykonany zostaje ponownie, aż do zakończenia sie֒
sukcesem lub wyczerpania wszystkich kierunków.

Etapy symulacji

Symulacja środowiska jest realizowana w epokach. Każda epoka sk lada sie z trzech
faz. W pierwszej fazie realizowany jest ruch i zderzenia cza֒steczek. W fazie drugiej
ruch i zderzenia fotonów z cza֒steczkami, zaś w fazie trzeciej wykonywane sa֒ programy
kompleksów. Kompleksy wybierane sa֒ w losowej kolejności, a w czasie wykonania
programu jednego kompleksu przemiany pozosta lej cze֒ści systemu sa֒ zatrzymane –
tylko jedna funkcja może być realizowana w danej chwili czasu.

Kodowanie

Kompleks cza֒steczek może kodować program. Każdy predykat structure jest
reprezentowany przez pojedynczy stos cza֒steczek w którym zakodowana jest lista
predykatów exists. Stos koduja֒cy predykat structure(0) także koduje predykaty
akcji. Stosy zwia֒zane z tym stosem koduja֒ negacje֒ predykatów structure. Program
przedstawiony na rys. 1 jest reprezentowany przez strukture֒ cza֒steczek pokazana֒ na
rys. 5.7.

Stosy cza֒steczek koduja֒cych predykaty sa֒ etykietowane specyficznymi typami
cza֒steczek, wie֒c nie każdy stos zawiera w sobie funkcje֒.

5.3 Podsumowanie

Środowisko DigiHive zosta lo zrealizowane poprzez rozszerzenie za lożeń środowiska
Universum (opisane w rozdziale: 4.3.3). Podstawowe różnice to:
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structure2():-
exists 01100110

structure() :-
exists 000000xx, mark V1,
exists 11111111 bound to

V1 in N, mark V2),
exists 11110000 bound to

V2 in NW, mark V3),

structure1():-
exists 10101010

Rys. 3: Program z rys. 1 zakodowany w kompleksie cza֒steczek. Zauważmy, że predykaty
not(structure) sa֒ kodowane przez stosy cza֒steczek przylegajacych do stosu
koduja֒cego predykat structure(0)

• na poziomie fizyki: zasta֒pienie dyskretnych po lożeń cza֒steczek po lożeniami w
przestrzeni cia֒g lej,

• na poziomie oddzia lywań pomie֒dzy cza֒steczkami: zasta֒pienie je֒zyka asem-
blerowego, deklaratywnym je֒zykiem wysokiego poziomu

6 Symulacje

W rozdziale 6 opisano wyniki kilku symulacji ilustruja֒cych możliwości środowiska i
be֒da֒cych testem dla za lożeń projektu.

6.1 Proste przyk lady zjawisk emergentnych

W rozdziale 6.1 przedstawiono przyk lady 3 symulacji ilustruja֒cych powstawanie
z lożonych struktur na skutek wspó ldzia lania zespo lu prostych programów.

6.2 Koncepcja budowy systemu samoreprodukuja֒cego sie֒

W rozdziale 6.2 opisano wyniki prac nad implementacja֒ zmodyfikowanego modelu von
Neumanna (3.2). Oryginalny system von Neumanna zrealizowany by l w deterministy-
cznym środowisku automatu komórkowego, zasadniczo różnia֒cym sie֒ od środowiska
DigiHive. W modelu von Neumanna nie wyste֒puja֒ cza֒steczki stanowia֒ce materia l, z
którego budowane sa֒ struktury, stan danej komórki może ulegać dowolnej zmianie
wynikaja֒cej z funkcji przej́sć automatu.

W opisywanym systemie zrezygnowano z budowy jednej struktury (kompleksu
cza֒steczek) D na rzecz oddzielnych struktur A, B, d(A) oraz d(B). Startuja֒c od
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pocza֒tkowej populacji z lożonej z co najmniej pojedynczych egzemplarzy poszczegól-
nych struktur, powinnísmy zaobserwować ich powielanie. Na skutek dzia lania struktury
B powieleniu powinny ulec opisy tj. d(A) oraz d(B), natomiast struktura A powinna
doprowadzić to utworzenia kopii struktur A i B. W tak zaprojektowanym ekspery-
mencie nie ma znaczenia kolejność powielania, nie ma wie֒c potrzeby budowy struktury
synchronizuja֒cej C. W ramach rozprawy opisano pierwszy etap, tj. implementacje֒ uni-
wersalnego konstruktora A i jego replikacje֒.

Uniwersalny konstruktor

Przez uniwersalny konstruktor be֒dzie rozumiana struktura A (kompleks cza֒steczek)
zdolna do budowy dowolnej struktury X na podstawie jej opisu d(X). Dopuszcza sie֒
wytworzenie przez A na podstawie opisu d(X ′) struktury X ′ 6= X, która naste֒pnie pod
wp lywem środowiska jest zdolna do przekszta lcenia sie֒ w X.

Opisywany poniżej konstruktor wykonuje naste֒puja֒ce zadania:

1. Wyszukanie  lańcucha informacyjnego – d(X). Lańcuch informacyjny może być
traktowany jako program napisany w je֒zyku, zawieraja֒cym naste֒puja֒ce polece-
nia: PUT (dodaje cza֒steczke֒ do budowanej struktury), SPLIT (rozpocze֒cie bu-
dowy nowego stosu, po la֒czonego na określonym kierunku z wcześniej budowanym
stosem), NEW (rozpocze֒cie budowy nowego stosu, nie po la֒czonego z wcześniej bu-
dowanym stosem) i END (zakończenie budowy). Lańcuchem informacyjnym jest
stos cza֒steczek o ustalonym typie. Przyk ladowo naste֒puja֒cy program, tworza֒cy
stos dwóch cza֒steczek typu 01010101:

PUT(01010101)
PUT(01010101)
END

jest kodowany przez stos cza֒steczek:

11111111
01010101
00000001
01010101
00000001

2. Pod la֒czenie sie֒ do  lańcucha informacyjnego i rozpocze֒cie konstrukcji struktury
X.

3. Sekwencyjne przetwarzanie  lańcucha informacyjnego:

(a) Jeżeli napotkano cza֒steczke֒ koduja֒ca֒ polecenie PUT, – wyszukanie cza֒steczki
o określonym typie (argument polecenia) i pod la֒czenie do budowanej struk-
tury X.

(b) Jeżeli napotkano cza֒steczke֒ koduja֒ca֒ polecenie SPLIT – roz la֒czenie bu-
dowanej struktury X na dwa stosy cza֒steczek i utworzenie po la֒czenia na
zadanym kierunku (argument polecenia) pomie֒dzy nimi.

(c) Jeżeli napotkano cza֒steczke֒ koduja֒ca֒ polecenie NEW – od la֒czenie budowanej
struktury X od konstruktora i rozpocze֒cie budowy nowego stosu na pod-
stawie typu cza֒steczki zakodowanej w  lańcuchu informacyjnym (argument
polecenia).
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4. Po przetworzeniu ca lego  lańcucha informacyjnego - od la֒czenie sie֒ od  lańcucha i
od la֒czenie budowanej struktury X od siebie (interpretowane jako polecenie END).

Spośród wymienionych zadań poważna֒ trudność stanowi zakodowanie poleceń
zwia֒zanych z przetwarzaniem  lańcucha informacyjnego. W specyfikacji je֒zyka brakuje
poleceń umożliwiaja֒cych wykonywanie instrukcji warunkowych oraz możliwości poró-
wnywania typów cza֒steczek, które znacza֒co u latwi ly by zakodowanie wymienionych
zadań. Rozwia֒zaniem problemu jest utworzenie programów modyfikowanych podczas
pracy konstruktora (nazywanych dalej szablonami): T1

”
odszukaj cza֒steczke֒ o typie

<T> i umieść ja֒ na szczycie budowanego stosu cza֒steczek” (gdzie <T> jest dowol-
nym, podmienianym typem cza֒steczki), T2

”
podziel budowany stos cza֒steczek na dwa

stosy i utwórz po la֒czenie na kierunku <D> pomie֒dzy nimi”(gdzie <D> jest dowolnym,
podmienianym numerem kierunku).

Szablony zosta ly zakodowane jako stosy cza֒steczek tworza֒ce nieaktywne programy.
Każdy szablon zawiera pewien charakterystyczny znacznik (sekwencje֒ cza֒steczek o
określonym typie). Podmiana cza֒steczek pomie֒dzy znacznikami aktywuje program
zdolny do wykonania dzia lania na cza֒steczce o określonym typie ba֒dź na określonym
kierunku.

Uniwersalny konstruktor zosta l utworzony jako kompleks sk ladaja֒cy sie֒ z 10
dzia laja֒cych niezależnie programów, uzupe lnionych o cza֒steczki specjalne s luża֒ce m.in.
do synchronizacji pracy poszczególnych programów:

P1 Program odnajduje i przy la֒cza konstruktora do  lańcucha informacyjnego.
Program przy la֒cza tzw. wskaźnik czyli stos 3 cza֒steczek o określonym typie do
 lańcucha informacyjnego. Wskaźnik określa miejsce  lańcucha, które w danym
momencie jest dekodowane. Ponieważ  lańcuch informacyjny zawsze zaczyna sie֒
od kodowania typu cza֒steczki (tj. polecenia PUT), program naste֒pnie od la֒cza
cza֒steczke֒ koduja֒ca֒ typ od  lańcucha informacyjnego i przy la֒cza w określone
miejsce programu P3. Aktywuje program P3.

P2 Program sprawdza czy aktualnie dekodowane jest rozpoznawanie określonego
typu cza֒steczki (polecenie PUT). Jeżeli tak, to od la֒cza cza֒steczke֒ od  lańcucha
informacyjnego i przy la֒cza w określone miejsce programu P4. Aktywuje program
P4.

P3 Szablon T1 aktywowany na skutek dzia lania programu P1 lub P10. Wyszukuje
cza֒steczke֒ o określonym typie (argument pierwszego polecenia PUT lub NEW)
i rozpoczyna tworzenie stosu. Po zakończeniu dzia lania od la֒cza od siebie frag-
ment przy la֒czony przez P1 (P10) i przy la֒cza go z powrotem do  lańcucha in-
formacyjnego (deaktywuje sie֒). Poprzez zmiane֒ po la֒czeń pomie֒dzy cza֒steczkami
koduja֒cymi stan, aktywuje program P7.

P4 Szablon T1 aktywowany na skutek dzia lania programu P2. Wyszukuje cza֒steczke֒
o określonym typie (argument polecenia PUT) i do la֒cza do budowanego stosu. Po
zakończeniu dzia lania od la֒cza od siebie fragment przy la֒czony przez P2 i przy la֒cza
go z powrotem do  lańcucha informacyjnego (deaktywuje sie֒). Poprzez zmiane֒
po la֒czeń pomie֒dzy cza֒steczkami koduja֒cymi stan, aktywuje program P7.

P5 Program sprawdza czy aktualnie dekodowane jest rozpoznawanie określonego
kierunku (polecenie SPLIT). Jeżeli tak, to od la֒cza cza֒steczke֒ od  lańcucha
informacyjnego (argument polecenia SPLIT) i przy la֒cza w określone miejsce
programu P6. Aktywuje program P6.
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P6 Szablon T2 aktywowany na skutek dzia lania programu P5. Od la֒cza cza֒steczke֒
znajduja֒ca֒ sie֒ na wierzcho lku budowanego stosu, przesuwa reszte֒ stosu na
określonym kierunku (argument polecenia SPLIT) i tworzy po la֒czenie pomie֒dzy
cza֒steczka֒ a reszta֒ stosu. Cza֒steczka ta stanowić be֒dzie nowa֒ podstawe֒ dla
budowanej konstrukcji. Po zakończeniu dzia lania od la֒cza od siebie fragment
przy la֒czony przez P4 i przy la֒cza go z powrotem do  lańcucha informacyjnego
(deaktywuje sie֒). Poprzez zmiane֒ po la֒czeń pomie֒dzy cza֒steczkami koduja֒cymi
stan, aktywuje program P7.

P7 Program przesuwa wskaźnik wzd luż  lańcucha informacyjnego, jeżeli zakończono
dekodowanie aktualnej cza֒steczki. W zależności od aktualnej cza֒steczki aktywuje
program P2, P5, P8, P9 lub P10.

P8 Program przesuwa wskaźnik wzd luż  lańcucha informacyjnego, jeżeli w  lańcuchu
koduja֒cym znajduje sie֒ niepoprawna cza֒steczka określaja֒ca polecenie dla kon-
struktora (tj. niekoduja֒ca jednego z poleceń: PUT, SPLIT, NEW).

P9 Program kończa֒cy translacje֒ jeżeli osia֒gnie֒to koniec  lańcucha koduja֒cego (polece-
nie END). Program od la֒cza budowana֒ strukture֒ od konstruktora oraz od la֒cza
konstruktor od  lańcucha koduja֒cego.

P10 Program sprawdza czy aktualnie dekodowane jest rozpocze֒cie budowy nowej
struktury (polecenie NEW). Jeżeli tak, to od la֒cza budowana֒ strukture֒ od
 lańcucha koduja֒cego naste֒pnie od la֒cza cza֒steczke֒ koduja֒ca֒ typ od  lańcucha
informacyjnego i przy la֒cza w określone miejsce programu P3. Aktywuje program
P3.

Diagram przej́sć stanów (jako stan konstruktora rozumiany jest aktualnie wykony-
wany program) przedstawiono na rysunku 4.

P1 P3 P7 P9

P2 P4

P5 P6 P10 P3

P8

Rys. 4: Diagram przej́sć stanów dla uniwersalnego konstruktora. Zapis
”
P1→P3”należy

rozumieć jako:
”
wykonywany jest program P1 w rezultacie czego, w kolejnym cyklu

wykonywany jest szablon P3” itp.

Przyk ladowe symulacje

W rozdziale 6.2.2 opisano wyniki przyk ladowych symulacji z wykorzystaniem uniwersal-
nego konstruktora: utworzenie kompleksu o kszta lcie rombu oraz utworzenie kompleksu
o kszta lcie “p latka”. W drugim eksperymencie konstruktor utworzy l zespó l programów,
który naste֒pnie zbudowa l końcowa֒ strukture֒. Dok ladny opis programów sk ladowych
zawiera rozdzia l 6.1.1.
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Replikacja konstruktora

W sytuacji gdy konstruktor A dzia la na opisie d(A), czyli buduje swoja֒ kopie֒, najważ-
niejszym problemem do rozwia֒zania jest wp lyw aktywności cze֒ściowo zbudowanego
konstruktora. Struktura ta nie powinna rozpocza֒ć dzia lania zanim nie zostanie
ca lkowicie ukończona, inaczej symulacja może przebiegać w sposób nieprzewidywalny
(np. niedokończony konstruktor zacznie budować swoja֒ kopie֒). Z drugiej strony kon-
struktor buduja֒cy strukture֒ nie może rozpoznać tej struktury jako cze֒ści samego siebie
(jak opisano poniżej, pewna struktura po la֒czeń pomie֒dzy pewnymi charakterysty-
cznymi cza֒steczkami konstruktora s luży do synchronizacji dzia lania poszczególnych
jego funkcji). Problem można rozwia֒zać na dwa sposoby:

1. Poprzez budowe֒ komplementarnego konstruktora A′ tj. struktury która ma inne
elementy charakterystyczne oraz wymaga innej sk ladni dla opisu budowanej
struktury d′(X). System samoreprodukuja֒cy sk lada lby sie֒ zatem z pary kon-
struktorów A, A′ oraz opisów d(A′) oraz d′(A). Konstruktor A tworzy lby zawsze
nowy egzemplarz A′ natomiast A′ tworzy lby A.

2. Poprzez tworzenie pewnej nieaktywnej (nie dzia laja֒cej) struktury E, która po
od la֒czeniu od konstruktora aktywuje sama֒ siebie tj. przekszta lci sie֒ do struktury
A. Zauważmy, że w tym podej́sciu struktura A nie musi być w pe lni uniwersalnym
konstruktorem – tj. nie musi bezpośrednio odtwarzać pe lnej struktury swoich
po la֒czeń. Wystarczaja֒ca jest możliwość utworzenia pewnej struktury z lożonej z
po la֒czonych stosów cza֒steczek.

W rozdziale 6.2.3 opisano wyniki eksperymentu polegaja֒cego na wykonaniu kopii
konstruktora zgodnie z za lożeniami z p. 2. Eksperyment zakończy l sie֒ powodzeniem,
jednakże problemem okaza la sie֒ niska wydajność procesu (symulacja trwa la ok. 3
miesie֒cy na komputerze klasy PC z procesorem Quad 6600).

6.3 Wnioski i dalsze kierunki badań

W ramach pracy zaprojektowano i zaimplementowano abstrakcyjne środowisko symula-
cyjne DigiHive spe lniaja֒ce za lożenia podane przez Langtona. Wyniki przedstawionych
symulacji wskazuja֒, że środowisko DigiHive jest dobrym i efektywnych narze֒dziem s luża֒-
cym do modelowania procesów z lożonych.

W rozdziale 6.3 opisano proponowane rozszerzenie środowiska w celu zwie֒kszeniu
efektywności symulacji, w szczególności procesu samoreprodukcji. Najwie֒kszym pro-
blemem okaza l sie֒ brak możliwości bezpośredniego porównywania typów cza֒steczek,
co prowadzi do nadmiernej komplikacji konstruktora, poprzez konieczność tworzenia
programów pośrednich, aktywowanych przez inne programy. Planowane jest rozsz-
erzenie listy poleceń poprzez wprowadzenie polecenia exists like umożliwiaja֒cego
odszukanie cza֒steczki o typie takim samym lub podobnym (z zadana֒ dok ladnościa֒)
jak cza֒steczka wcześniej odszukana. Polecenie takie jest nadmiarowe (daje sie֒ je zapro-
gramować za pomoca֒ istnieja֒cych predykatów), ale jego obecność pozwoli na znaczne
uproszczenia konstruktora a zatem zwie֒kszenia efektywności.

Analiza wyników symulacji, wykaza la również konieczność usunie֒cia ograniczenia
polegaja֒cego na możliwości tworzenia wia֒zań poziomych wy la֒cznie na poziomie
cza֒steczki znajduja֒cej sie֒ na spodzie stosu. Zmiana taka umożliwi równoleg le prze-
twarzanie jednego  lańcucha informacyjnego przez kilka konstruktorów lub przez kon-
struktory i programy tworza֒ce kopie֒  lańcucha.
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Planowane sa֒ również zmiany w schemacie kodowania poleceń w celu skrócenia za-
pisu pojedynczych predykatów (rozbicie polecenia exists na sekwencje֒ atomowych
poleceń) oraz zmniejszenie prawdopodobieństwa zmian w  lańcuchu cza֒steczek koduja֒-
cych pojedynczy predykat na skutek losowych zdarzeń. Oczekuje sie֒, że opisane zmiany
powinny u latwić modelowanie procesów samoorganizacji poprzez ograniczenie efektów
zdarzeń losowych (zdarzenie losowe powinno prowadzić do niewielkich zmian w kodzie
programu).

7 Podsumowanie

W pracy przedstawiono za lożenia środowiska DigiHive przeznaczonego do modelowa-
nia procesów z lożonych. Przedstawiono wyniki symulacji ilustruja֒cych możliwości
środowiska oraz opracowano za lożenia eksperymentu symuluja֒cego proces samorepro-
dukcji.
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Chapter 1

Introduction

During recent years, researches in many fields of science and engineering are more and
more directed towards explaining or utilizing general or specific phenomenas arising
as a result of interactions among many homogeneous or heterogeneous objects of
systems. These interactions can be neutral, cooperative or antagonistic and usually
lead to complex behaviour of the system as a whole. These fields of research include
biology, sociology, computer science and engineering, automatic control and robotics,
and generally such fields where the investigated systems consist of many interacting
objects.

The question arises how to model the behavior of a system consisting of many
interacting objects? The classical mathematical framework, has only limited usefulness
because the mathematical models are too complex to be useful or are simply inadequate.
The basic tools used in the research are so called individual-based modelling or
agent based-modelling or particle methods. The basic idea underlying behind all these
approaches is to specify the local rules of behavior of the objects including rules
describing the interactions with other objects, and then to simulate, with the help
of a computer, the evolution of a system consisting of many such objects. During the
simulation, there arises the complex global behavior of a model as the result of a local
interactions of its objects.

The aim of the work was to design, implement, and use, in a number of
experiments, an abstract software environment (an artificial world) suitable for
modelling systems consisting of many moving and interacting objects distributed in
space. The environment, named DigiHive is directed towards modeling of complex
systems manifested by processes of self-organization, self-reproduction and self
modifications. The environment is mainly aimed at modelling and discovering the basic
general properties of complex systems consisting of many elements and less at modelling
of specific phenomena of real systems.

The environment is a two-dimensional space in which particles and complexes of
particles exist, move, and collide. The collisions may result in creating or removing
bonds between particles. On a higher level of interactions, complexes of particles may
selectively modify the structures of other particles and complexes of particles according
to functions encoded in them. The latter property opens unlimited possibilities of
modelling the behavior of complex systems – systems the elements of which can
mutually modify each other changing their structures and in this way changing their
functions. This in turn can lead to the emergence of new functions and interactions
which is a crucially novel property of the designed environment. The properties of the
environment constitute an artificial world model in which many basic ideas of biological
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processes, living organisms or software agents’ interactions may be investigated by
computer simulations.

The system allows to simulate the evolution of various structures, especially self-
reproducing “organisms” but without the initially defined fitness criteria (which is the
basic need in standard evolutionary algorithms). The criteria are implicitly defined in
the rules (“physics”) of the environment.

One of the central ideas of contemporary artificial intelligence methods is the
existence of agents controlling their own behavior by means of abstract “disembodied”
symbol manipulation. This is contrary to the previous cybernetics models developed in
the fifties of the twentieth century [90, p. 60]. During last years the idea is emerging that
the fully intelligent system should have the intelligence “emobodied” in the hardware
like in the living organisms. Attempts are made to build such system [47, 99]. The
DigiHive environment can be partly seen as an attempt of realisation of “embodiment”
– the structure of complexes of particles is interpreted as a program affecting other
complexes.

The functions embedded in the structures of complexes are expressed in a specially
designed Prolog-like language. The key feature of the language is the property that
small changes in the code of a program should usually lead to relatively small changes
in the program’s behaviour. Such a property of the language is crucial while using the
system to simulate the evolutionary, spontaneous development of complex structures.

Using the DigiHive environment, two main groups of experiments were designed and
performed:

1. Various manifestations of emergent phenomena – self-organization of particles
starting from initial state.

2. An universal constructor – being the first step to simulate various self-
reproduction strategy and its dynamics.

1.1 Thesis

The designed and implemented DigiHive simulation environment is a novel tool for
simulating the various processes of self-organization, especially it allows to simulate
the various self-replicating structures working in the random environment.

The designed and implemented language encoded in the structures of particles having
the property that small changes in the code of a program usually lead to relatively small
changes in the program behavior is an important factor for simulation and spontaneous
development of complex structures.

1.2 Organization of the dissertation

Chapter 2 contains an abbreviated review of particle methods, with particular emphasis
on the abstract ones. Chapter 3 comprises of selected issues related to simulation of
complex behaviour, related to an artificial life, self-reproduction and self-organization
(in terms of artificial life) researches. Chapter 4 provides a review of selected popular
software environments suitable for the simulation of the processes described in Chapter
3. Chapter 5 contains a detailed description of the DigiHive environment – its physics,
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and the embedded declarative language. Chapter 6 provides a review of the first
simulations performed in the DigiHive environment. This chapter describes the simple
emergent phenomena simulated in the environment and the results of experiments with
the implementation of the universal constructor. At the end of the chapter, results are
discussed, and suggestions for further work are included. Chapter 7 contains a summary
of the dissertation. Appendix A comprises of a manual for the environment: installation,
user interface and input/output files description. The sample input file is presented in
Appendix B. In Appendix C, a full review of the DigiHive commands is presented.
Appendix D describes the self-organization experiment in the Universum environment,
whose results serve as a base to create the DigiHive environment.
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Chapter 2

Particle methods

The term particle methods describes a group of simulation of physical systems in which
global behaviour emerges as the result of a set of finite number of discrete particles to
represent the state of a system. Each particle can represent one discrete physical object
(from single atoms to astronomical objects)1 or a group of discrete objects. Every single
particle can be described by a set of variables related to specific problems (e.g. mass,
momentum, energy, position, charge, vorticity etc.). The formal definition of a particle
can be found in: [46]. Applications of particle methods ranges from physical simulations
to abstract issues (see chapter 3).

Sect. 2.1 presents a short review of particle methods used in simulations in the field
of natural science. Next sections focus on abstract methods: cellular automata (2.2),
artificial chemistry (2.3) and agent based modelling (2.4).

2.1 Physical particle methods

In the recent years, tens of particle methods have been developed. Particle methods are
currently widely applied to various areas of simulation especially, computational fluid
dynamics (CFD) and computational solid mechanics (CSM), etc. The sample particle
methods used in physical simulation are:

1. Molecular dynamics (MD). Molecular dynamics is the most popular particle
method in scientific and engineering applications. A comprehensive review of
the method can be found in plenty of works e.g. [6, 150] etc. It originates in the
fifties (e.g. [4]) as a tool for calculating some properties of physical systems, like
gases, liquids or solids. The first works, focused on simulation of a set of particles
moving freely in space and colliding elastically. The next works [148] introduced
the concept of a force field forming modern molecular dynamics.

MD has been used for various simulation, e.g. simulation of: the viscosity and
heat transfer in liquids [28], formation of defects in crystals [27], properties of
macromolecules in biological systems [13] etc.

1The main concept of particle methods reflects the following Feynmann’s sentence [50, chapt. 1.2]:
“if, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed
on to the next generations of creatures, what statement would contain the most information in the
fewest words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it)
that all things are made of atoms – little particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but repelling upon being squeezed into one another”.
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Figure 2.1: Example of resolving particle collisions in LGCA model on nodes of a
hexagonal grid.

2. Smoothed particle hydrodynamics (SPH). SPH [109, 127] was developed in 1977
by Lucy [114] and simultaneously by Gingold and Monaghan [62] in order to
model astrophysical phenomena. In SPH, a set of discrete astrophysical particles
is consolidated into a quasicontinuum [108, p. 25]. The movement of simulated
particles is similar to the behaviour of a liquid, thus it is modelled like a fluid
governed by the equations of classical hydrodynamics. SPH is now extensively
use for astrophysical simulations (e.g. [75]) and CFD/CSM problems (e.g. [126]).

Some extensions of SPH has been recently proposed, as an example the
reproduced kernel particle method has been developed in 1995 [110]. A detailed
description of this method and its applications can be found in: [108].

3. Lattice Gas Cellular Automata (LGCA): This method was developed as
simplification of molecular dynamics [150, 200]: discretisation of position
(molecules are placed on nodes of a hexagonal grid) and time, reduction of impact
to the nearest neighbourhood and simplification of rules of collisions (see Fig. 2.1).
Using LGCA, Mayer and Rasmussen simulated micellar self-reproduction [120]
etc.

The successor of LGCA is Lattice Boltzmann method (LBM), becoming very
popular due to its simplicity and efficiency (easy parallelisation). Recently
published applications include: simulation of low Mach number combustion [20],
turbulence flow [51] or chemical engineering [41] etc.

Other methods include: dissipative particle dynamics (DPD) [72], particle-in-Cell
[66], fluid-in-Cell [61], moving particle semi-implicit [98], discrete element method [34],
vortex methods [21] etc. It is common to modify the methods for particular simulations,
e.g. the modified DPD was used to simulate of blood dynamics in capillary vessels
[14, 45].

Besides the methods closely related to physical problems (CFS, CFD, astrophysics
etc.), abstract methods: like cellular automata (2.2), artificial chemistry (2.3) or agent
based modelling (2.4) are also considered.
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Figure 2.2: The sequence of 256 possible cellular automaton rules for r = 1. The number
assigned is such that when written in base 2, it gives a sequence of 0’s and 1’s that
correspond to the sequence of new states chosen for each of the eight possible cases
covered by the rule [203, p. 53]

2.2 Cellular automata

The history of cellular automata (CA) began in the late forties [203, p. 876]. John
von Neumann tried to develop an abstract model of self-reproduction (see 3.2), after
his attempt of building a model described by differential equations failed. Following a
suggestion from Stanis law Ulam, he simplified his model and introduced the concept of
cellular automata [197]. The cellular automata became popular in the seventies after a
series of Gardner articles regarding Conway’s “Game of life” [57, 58].

The formal definition of CA can be found in [3, p. 28]. A cellular automaton is
a lattice of sites. Each site has a finite state automaton (FSM)2 [73, p. 37–55] inside
and can take one of k values. Sites are updated at discrete time steps. At each time
step, every FSM changes the state of its site according to a transition function which
depends on the state of the site’s neighbours.

A simple example of one-dimensional automata is the automata where each site has
two neighbours, thus the value of site i at time t + 1 is determined according to:

a
(t+1)
i = φ(a

(t)
i−1, a

(t)
i , a

(t)
i+1) (2.1)

where φ is a function of three k-valued variables.
Automata, where only the nearest neighbours are checked, are called r = 1 rules,

where the two leftmost and two the rightmost checked are called r = 2 rules and so on.
Each rule can be distinguished by its unique number as explained in Fig. 2.2. Rules
which depends on the sum of the values of its neighbourhood are called totalistic, the
value of site i at time t + 1 for totalistic automata is described by the equation:

a
(t+1)
i = φ(a

(t)
i−1 + a

(t)
i + a

(t)
i+1) (2.2)

The cellular automata rule is called legal if it satisfies the following conditions:

1. if all neighbourhoods contain cells in a quiescent state (usually 0), the rule should
also produce the quiescent state

2Abbreviation from other common name: finite state machine
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Rule 254 (Class I) Rule 90 (Class II)

Rule 30 (Class III) Rule 110 (Class IV)

Figure 2.3: Four classes of cellular automata behaviour. 100 steps starting from a single
black cell.

2. all rotations of a neighbourhood should map to the same state (spatial isotropy).
E.g. the two-dimensional rule must be symmetric.

The automaton state is called Garden-of-Eden, if it “cannot occur except at time
T = 0 [That is] there is no configuration at time T − 1 which will give rise to the
given configuration at time T by means of the function f which defines the rules for
the transition from one state to another” [129].

Wolfram [201, 202] first investigated 1D CAs with k = 2 and r = 1 (see Tab. 2.1).
According to the results of evolution from the initial state, the behaviour of the cellular
automata may be classified as belonging to one of the four classes of behaviour:

• Class I: the cellular automata evolve into a homogenous state (rule 254 in Fig.
2.3).

• Class II: the initial state is copied to generate a uniform structure which expands
by one site in each direction on each time step (rule 90 in Fig. 2.3).

• Class III: almost all initial states lead to aperiodic, chaotic patterns (rule 30 in
Fig. 2.3)

• Class IV: automata that don’t fit into any neither of the I-III categories (rule 110
in Fig. 2.3).

The behaviour of class I and II automata is consistent with intuition – simple rules
lead to simple behaviour. Contrary to them, the rule 30 in Fig. 2.3 (Class III) produces
extremely complex and irregular behaviour. The sequence of states below the initial
cell is used as the random number generator for large integers in Mathematica3 [203,

3Popular computational software program: http://www.wolfram.com/products/
mathematica/overview/compute.html.
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Rule Classif. Rule Classif. Rule Classif. Rule Classif.
0 T, I 72 I 128 T, I 200 II
4 II 76 II 132 I 204 II
18 III 90 III 146 III 218 II
22 T, III 94 II 150 T, III 222 II
32 I 104 T, I 160 I 232 T, II
36 II 108 II 164 II 236 II
50 I/II 122 III 178 II 250 I
54 III 126 T, III 182 III 254 T, I

Table 2.1: Table of k=2 and r=1 legal rules and their classification: T–totalistic, Roman
number indicate the Wolfram class of automata [3, p. 31].

p. 317]. Interestingly – it is not certain where this complexity came from. The evolution
of this automata is as Wolfram said: “the single most surprising scientific discovery I
ever made” [203, p. 28].

The most complex and interesting of the CA rules are those that fit into the
class IV automata, like rule 110. The behaviour is a strange mixture of regularity
and irregularity. It has been argued that such automata are capable of universal
computation i.e. patterns may serve as universal Turing machines. This has been proved
for rule 110 [32] and Conway’s “Game of life” [3, p. 37]. The consequence of this fact is
that the behaviour of the cellular automata cannot be predicted in general.

Cellular automata are also generalised to:

1. probabilistic cellular automata [64, 104]: where each cell has a certain probability
p (0 < p ≤ 1) of being updated at each time step,

2. continuous cellular automata [203, p. 155–160]: where cell states are continuous
and transition rules are encoded as a continuous function.

Views on cellular automata evolved over time. At the beginning, it was considered
as purely abstract “imaginary physics” (as Stanis law Ulam called them). In the 80s due
to successful physical simulations (e.g. [194, 201]), CA was regarded as a useful tool
that should“attempt not to simulate specific physical phenomena but rather to embody
general physics ideas” [194]. In 2002 Wolfram claimed, that CA (or CA-like systems)
should form the fundamentals of the “new kind of” science, that will no longer be based
on differential equations [203] (in fact the idea appeared much earlier e.g. [191] ) – this
statement met with a grudging reception amongst physicists (e.g. [162]).

Regardless of this discussion, due to its simplicity and surprising possibilities cellular
automata has been used for the simulations of various physical phenomena like crystal
growth, turbulent flow, diffusion etc. (see also LGCA/LBM methods in Sect. 2.1)
[59, 60], chemistry [94], ecology [9, 179], economy [19], sociology [67] etc. Other classes
of cellular automata includes: quantum automata [157], cellular neural networks [161]
etc.

2.3 Artificial chemistry

Artificial chemistry emerged as a subfield of artificial life (see 3.1) in 1992 [52].
According to [40]: an artificial chemistry (AC) is a man-made system that is similar
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the to real chemical system. More formally, it is a triple (S, R, A), where S is a set of
possible molecules (basic AC entities), R is a set of rules defining possible reactions
between molecules, and A is an algorithm describing how the rules are applied to the
molecules. It is also possible to define an artificial chemistry as a tuple (S, I) where I
describes interaction between molecules (aggregates R and A). An example of artificial
chemistry is Squrim3, described in Sect. 4.3.2 on page 39.

If there is an isomorphism between a molecule or reaction in AC to a molecule or
reaction in chemistry, the AC can be called analogous, otherwise it is called abstract.
Analogous ACs are part of computational chemistry [33] and are beyond scope of this
dissertation (the goal of computational chemistry is to model chemical processes as
closely as possible).

2.3.1 Molecules

The set of molecules S = {s1, s2, ..., sn} describes all molecules that can appear in an
AC. Note that the molecule does not necessarily mean the concept of “real” chemistry,
for instance it can be numbers [10], computer programs (see: 4.3.3, 4.2.1, 5) etc.
Molecules can be defined:

• explicit when the S is given as the enumeration of symbols (e.g.: S = {A, B, C})

• implicit when S is a description of how to construct a molecule (e.g. S =
{1, 2, 3, ...}).

2.3.2 Rules

The set of rules R describes possible reaction between molecules s ∈ S. It is common
to write rules according to the chemical notation:

s1 + s2 + ... + sn → s′1 + s′2 + ... + s′m (2.3)

The rule depicts that n molecules on the left-hand side can react and then be
replaced by the m components on the right-hand side. Rules can be defined in two
different ways:

• explicit when reaction rules are enumerated and explicitly given

• implicit when the definition of the interaction refers to molecule structure

2.3.3 Dynamics

The last term of AC’s definition describes how rules R are applied to the set of
components P . Note that P is not the same as S since molecules may appear in
different numbers. Dittrich [40] described two typical methods of the AC dynamics
modelling:

• Stochastic molecular collisions: every molecule is explicitly simulated. Typically
a sample of molecules is randomly drawn from the population of molecules P
then the possibility of applying a rule r ∈ R is checked. If so, the left-hand-
side molecules are replaced by the right-hand-side molecules given by r. This
approach provides the lowest level of description thus being the most realistic.
The simulation of a large population may be slow due to computational cost.
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• Continuous differential or discrete difference equations: the dynamics is described
using differential rate equations which reflect the concentration of molecule
species. A reaction r can be written as:

a1s1 + a2s2 + ... + ansn → b1s1 + b2s2 + ... + bnsn (2.4)

where ai, bi are counterparts of stoichiometric factors of chemical reaction. The
change of concentration of si is given by the equation:

dsi

dt
=

∑

r∈R

[(br
i − ar

i )
N
∏

j=1

s
ar

j

j ], i = 1, . . . , N (2.5)

Bagley et al. also discussed the possibility that the number of molecular species,
thus the number of equations is not fixed and may change over time [8].

2.3.4 Constructive dynamics

If new components can appear the AC is called constructive. If they are generated
through the action of other components, it is called strongly constructive if new
components are generated randomly it is called weakly constructive. In these terms,
natural chemistry is considered to be a strongly constructive system [52]. Constructive
ACs are commonly used with implicit defined rules.

An example of a constructive system is number-division chemistry [10]:

• A set of molecules consists of all natural number greater than one: S =
{2, 3, 4, . . .}

• When two molecules collide, the following reaction occurs:

R = {s1 + s2 → s1 +
s2

s1
: s1, s2 ∈ S} (2.6)

i.e. if s1 can divide s2 without remainder s2 is replaced by value s2/s1

Despite being very simple, the behaviour of the system is interesting. The initial,
random population of molecules tends to eliminate non-prime numbers until it finally
consists of primes number only. Finally, all numbers in the reactor are prime factors of
the initial population.

2.3.5 Applications

ACs are used for chemical [119], ecological [15, 43], economical [183] and social [184]
modelling. Another common application is the field of information processing e.g. AC
was used to get better results with an artificial neural network in robot controller [76].
Ziegler [205] successfully used AC to control the small Khepera robot [128]. Artificial
chemistries are also used as an optimisation algorithm, e.g. a Chemical Casting Model
has been used to solve the Travelling Salesman Problem [92].
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2.4 Agent based modelling

Agent based modelling (ABM) is a modelling and simulation approach applied to a
complex system or complex adaptive system in which the model is comprised of a large
number of interacting, autonomous elements (agents).

The term agent has many definitions among researchers, e.g. Elizabeth Sklar [177]
used this term to describe entities with the properties of autonomy and self-interested.
Mark Bedau used the term to describe “simple, low-level [entities] that simultaneously
interacts with each other [...] based on information about, and directly affect, only its
own local environment” [11]. Goran Trajkovski analysed different definitions and gave
the following list of fundamental properties of an agent (which may be used both alone
and in combinations) [192, p. 3]:

1. Autonomy: an ability to operate in an unaided and independent fashion

2. Proactivity: an ability to take initiative to affect actions toward its goals

3. Intentionality: the attribution of purpose, belief, need and desire

Agent-based models are used for various simulations regarding: flocking [156], ant
colony optimisation [42], crowd flow[68], economy [189], epidemiology [7] etc. An
abbreviated review of agent based-models is presented in Sect. 4.1 on page 29.
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Chapter 3

Complex system modelling

This chapter describes selected problems of complex system modelling. Sect. 3.1 consists
of introduction to artificial life, i.e. describes its main research directions. Sect. 3.2
contains a review of self-replication issues (mainly based on von Neumann’s concept).
Sect. 3.3 briefly describes self-organization within the context of artificial life field.

3.1 Artificial life

Artificial life (ALife) is an interdisciplinary study of life and life-like processes. The
history of ALife has its intellectual roots in von Neuman’s works on cellular automata
[197] (see also 3.2), Wiener’s works on cybernetics [198] and artificial intelligence
(especially genetic algorithms [70]). The name “artificial life” was coined by Langton,
who gave the following definition of the subject:“Artificial Life is the study of man-made
systems that exhibit behaviours characteristic of natural living systems. It complements
the traditional biological sciences concerned with the analysis a of living organism
by attempting to synthesise life-like behaviours within computers and other artificial
media. By extending the empirical foundation upon which biology is based beyond the
carbon-chain life that has evolved on Earth, Artificial Life can contribute to theoretical
biology by locating life-as-we-know-it within the larger picture life-as-it-could-be.”[103].

Charles Ofria quoted the following John Maynard Smith phrase that points to the
importance of ALife research: “So far, we have been able to study only one evolving
system and we cannot wait for interstellar flight to provide us with a second. If we want
to discover generalisations about evolving systems, we will have to look at artificial
ones.” [134].

Note, that the above definition of the ALife subject requires an accurate definition of
the living system. This is one of the most difficult philosophical and scientific problems
in the history of science [56, 167]. According to John Maynard Smith, there are two
distinct views of living systems: “One is of a population of entities which, because
they possess a hereditary mechanism, will evolve adaptations for survival [evolutionary
definition]. The other is of a complex structure which is maintained by the energy
flowing through it [ecological definition]” [121, p. 7] (quoted from: [186, p. 9]).

Research directions

At the moment, there are three main branches of artificial life [11]:

• Soft : simulations or other purely digital constructions that exhibit life-like
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Figure 3.1: Relations of the ALife methodologies (CA = cellular automata, IEC =
interactive evolutionary computation, EC = evolutionary computation, NN = neural
network, ACO = ant colony optimisation) [95, Fig. 1.1].

behaviour (see chapter 4), software models are generally based on assumptions
given by Langton [103]:

1. They consist of population of simple programs or specifications

2. There is no single program that directs all of the other programs

3. Each program details the way in which a simple entity reacts to local
situations in its environment, including encounters with other entities

4. There are no rules in the system that dictate global behaviour

5. Any behaviour at levels higher than the individual programs is therefore
emergent

• Hard artificial life produces hardware implementations of life-like systems, mainly
related to work with life-like robots [1], and evolvable hardware [17, 69],

• Wet artificial life synthesises living systems out of biochemical substances

Besides the scientific researches, ALife has also been recognized as an interesting
tool for artists: [122]

Methodology and applications

Kim and Cho gave the comprehensive review of the applications of artificial life.
According to their review, methodology of ALife comprises of: Lindenmayer systems
(L-systems), evolutionary computation, interactive evolutionary computation, agent-
based modelling (2.4), cellular automata, and ant colony optimisation. Another popular
tools, not mentioned by Kim and Cho, are artificial chemistries (2.3). Relations of the
methodologies with possible real-life applications are presented in Fig. 3.1.
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Interpretation and controversies

An interesting topic is the interpretation of soft ALife simulations [135, 142]. The most
popular view called weak artificial life [186, p. 38] treats them as models of various
processes associated with living organisms, but does not claim that any parts of them
are living themselves. On the other hand, proponents of the strong artificial life, claim
that simulated programs are alive in same manner as their biological counterparts, i.e.
life is independent of matter.

Robert Rosen [160] formulated a proof that living systems are fundamentally
different from Turing’s machines (the conclusion is similar to the one of Roger Penrose
in the field of artificial intelligence [143, 144]). His claim, referred as Rosen’s central
theorem, caused a lot of controversy among ALife researches (e.g. [25, 26, 113, 204]).
If his proof is correct, not only strong but also weak artificial life are wrong views. An
obvious implication of the Rosen’s theorem is that most of ALife researches are pointless
(as life cannot be computationally modelled, but it is still possible to simulate some of
its aspect).

Despite initial doubts [74], artificial life methods have been finally accepted as a
part of mainstream science (e.g. [24, 105, 106, 199]).

3.1.1 Open problems

Mark Bedau et al. [12] prepared a list of open problems in artificial life, identifying the
main directions of the artificial life research program:

1. How does life arise from the nonliving?

(a) Generate a molecular proto-organism in vitro. The aim of the task is to
create possibly simplest living organism in a laboratory. Molecular life
is understood as a self-reproducing entity, constructing itself in a simple
environment and capable of evolution. The environment should provide a
simple form of energy and nutrients for proto-organisms. At the moment,
researches have succeeded in creating artificial self-replicating systems with
limited evolution capabilities [151] but combining these in an autonomous,
evolvable, self-replicating system still remains an open problem.

(b) Achieve the transition to life in an artificial chemistry in silico. The task
is similar to the previous one as it requires a self-organised collection of
separate artificial molecules being able to replicate and evolve. The set of
molecules should be created spontaneously in an artificial chemistry started
from random initial seed. Artificial chemistry should be stochastic rather
than deterministic and constructive rather than descriptive (2.3). Internal
organization of generated structures should be emergent phenomena of
lower-level primitives.

Examples of simulation regarding this topic are described in Sect. 3.3.

(c) Determine whether fundamentally novel living organizations can exist. The
task is closely related to molecular biology. It includes the question whether
there exists a living organism without some essential features, like: genotype-
phenotype distinction, hierarchical organization etc. Answering the question
may be helpful in understating what structures may be treated as living
organisms (like nanobes [117] or structures found in Martian meteorites
[123]).
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(d) Simulate a unicellular organism over its entire lifecycle. Contrary to the first
two tasks, this one is related to the simulation of biological organism on the
computer. Performing the whole simulation is, at the moment, far beyond
the abilities of modern computers. Mark Bedau claims that a simplified
molecular dynamics version should be achievable this century. Examples
of recent works regarding this issue include: simulation of 1 million of
atoms for over 50ns, forming the complete satellite tobacco mosaic virus
[53]; simulation of protein folding for over 1µs [196] etc. Fellermann et al.
simulated simple proto-cell using the dissipative particle dynamics approach
[49]. It is an open question what sort of simplifications of biological models
can be done in order to the keep models accurate.

(e) Explain how the rules and the symbols are generated from physical dynamics
in living systems. An example of the symbolic level are genes and rules as
for replication or recombination. The task is to study how the underlying
physics can form higher level rules that can operate on symbols (with no
state transitions defined explicitly).

2. What are the potentials and limits of living systems?

(a) Determine what is inevitable in the open-ended evolution of life. The task
consists of two questions:

• What are the features common to all evolutionary processes?

• Do different evolutionary processes contain fundamentally different
evolutionary potential?

The task involves comparing the potential of evolution of living (biological)
organisms and the evolution of digital “forms of life”.

(b) Determine minimal conditions for evolutionary transitions from specific
to generic response systems. The example of a specific response system
is the mechanism present in simple organisms, that recognizes specific
foreign molecules and activates the necessary response. On the other hand,
multicellular organisms have an almost universal immune system, that can
respond to a previously unknown threat. The task is to understand how the
generic response system can arise from the specific response system in the
course of evolution.

(c) Create a formal framework for synthesising dynamical hierarchies at all
scales. Biological systems are organised in levels: ecosystems, organisms,
organs, tissues, cells, organelles, molecules, atoms [180, p. 6]. The first task
is to create formal, consistent framework to uniformly describe all levels (e.g.
the particle system developed by Rönkkö [159], briefly described on page
33). The second task, is to understand how these hierarchies are generated
in biological systems.

(d) Determine the predictability of evolutionary consequences of manipulating
organisms and ecosystems. The task is related to estimating both the cost
and benefits of “wet” ALife researches, which may caused an unpredictable
impact on the ecosystem. Simulation of consequences of human activity is
also related to this task (e.g. modelling the impact of corridors between
fragmented habitat on predator-prey oscillations [91]).
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(e) Develop a theory of information processing, information flow, and infor-
mation generation for evolving systems. The task consists of the following
sub-tasks:

• There are two complementary kinds of information transmission in
a living system: hereditary transmission through evolution time, and
transmission of information specified by the physical environment. The
task is to clarify the range of possibilities for information transmission
and determine which of those is exploited by the biosphere

• Components of living system (organisms or groups of organisms) are
able to solve problems, in a manner similar to genetic algorithms. The
task is to unify evolution with information processing in a comprehensive
theory.

• Understand how information is generated during the evolutionary
process.

3. How is life related to the mind, machines, and culture?

(a) Demonstrate the emergence of intelligence and the mind in an artificial living
system.

(b) Evaluate the influence of machines on the next major evolutionary transition
of life.

(c) Provide a quantitative model of the interplay between cultural and biological
evolution

(d) Establish ethical principles for artificial life. This task is closely related with
interpretation of an ALife simulation.

3.2 Self-replication

The idea that the complexity of the ecosystem could be explained by the process of
biological evolution is commonly accepted among scientists (e.g. [37]). Self-replication is
recognized as the crucial phenomenon that is needed to start the evolutionary process,
and to sustain growth in the complexity (if greater complexity means better fitness,
which is not always true [199]), obtained due to random processes. Tim Hutton briefly
explained this process: “in general, where complexity growth occurs and continues to
occur, the genomes are storing information against the flow of entropy (like Maxwell’s
demon) because of the reproductive advantage of doing so”[78].

A more formal introduction to this issue can be found in various sources e.g.
[3]. Eigen and Winkler [48] described various models of population growth, based on
game theory, that support claims of displacement of less-adapted organisms by better-
adapted ones.

In the context of ALife (3.1), Thomas Ray the author of Tierra (3.2.3) noted:
“self-replication is critical to synthetic life because without it, the mechanisms of
selection must also be predetermined by the simulator. Such artificial selection can
never be as creative as natural selection. The organisms are not free to invent their own
fitness functions. Freely evolving creatures will discover means of mutual exploitation
and associated implicit fitness functions that we would never think of. Simulations
constrained to evolve with predefined genes, alleles, and fitness functions are dead-
ended, not alive.” [154, p. 372] (cited from: [186, p. 52]).
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The importance of the ALife research of the self-reproduction driven evolution, was
summed up by Hutton : “the evolutionary process is often seen as creative in the sense
that it has produced many sophisticated organs and behaviours that surprise us with
their ingenuity, and yet this self-driven process has never been captured in a computer
model” [78].

Beyond the undoubted scientific value, the understanding of the self-replication
process plays also a significant role in engineering e.g. Chou and Reggia discussed
using cellular automata self-replication in order to obtain a massively parallel machine
being able to solve NP-hard problems [23], Eric Drexler sees self-replication as a crucial
feature in nanotechnology [44] etc.

3.2.1 Von Neumann’s models

The first attempt to create a formal description of a system that could support self-
reproducing was taken by von Neumann. Von Neumann discussed five different models
of self-reproduction [197, p. 91–99], but most of them were left unfinished.

The kinematic model

The kinematic model is the most general concept which involves a physical machine
moving freely in a stockroom of spare parts. The machine should have a memory tape
with encoded instructions. According to these instruction, the machine should move
in the stockroom and collect the proper parts. The collected parts should be joined
together creating in effect an exact copy of itself. When it finishes, it should copy its
own memory tape onto the blank tape of its offspring. In spite of referencing to the
mechanics or the electronics, the kinematic model was just a mental experiment (in
particular it ignores problems of force and energy). The model has been introduced
in a series of lectures at The University of Illinois in 1949, and has been popularised
in 1955 by Kemeny [93]. The concept was finished in terms of a cellular automata as
cellular model (see below).

Freitas and Merkle [55] reviewed tens of both theoretical and experimental works
on physical self-replicating systems, which in fact, reflect the von Neumann’s kinematic
model. As an example, the idea is present in the concepts of space exploration (e.g.
self-replicating, growing lunar factory [54]), a brief discussion on robotics applications
was published in Nature [63] etc.

The excitation-threshold-fatigue model

This model was designed close to the cellular automata model, but each cell was
replaced by an element similar to the neuron. The details of the neuron haven’t been
provided, but “through a careful analysis of his work, we can deduce that it would have
borne a fairly close relationship to today’s artificial neural networks” [188, p. 35].

The continuous model

Details of this model are not known, probably the differential equations would describe
“the excitation, threshold and fatigue properties of a neuron” [188, p. 35].
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The probabilistic model

Von Neumann intended to introduce probabilistic transitions between states instead of
deterministic, however no more details are known.

The cellular model

The cellular model is the most important model of self-reproduction. In this model,
cellular automata (2.2) provide strict theoretical background.

Von Neumann was well aware of the drawbacks of his model: “by axiomatising
automata in this manner, one has thrown half of the problem out the window, and it
may be the more important half. One has resigned oneself not to explain how these
parts are made up of real things, specifically, how these parts are made up of actual
elementary particles, or even of higher chemical molecules” [197, p. 77].

The main concept in this model is a universal constructor . The universal
constructor, denoted by A, is a machine (a particular automaton) capable of
constructing any other machine X (i.e. some other automaton) based on its description
φ(X)1 2 (the result is described in bold):

A + φ(X) ⇒ A + φ(X) + X (3.1)

It is easy to notice, that if the constructor is provided with its own description (X = A),
then it will construct the copy of itself:

A + φ(A) ⇒ A + φ(A) + A (3.2)

In order to make the full self-replication system, it is necessary to copy also the
constructor description d(A). To perform this, a new machine B is introduced, capable
of making the exact copy of any description (Fig. 3.2b). The A and B machines can
be joined together forming the consistent structure. When this structure is enhanced
by an additional machine C, which manages the order of execution, the new machine
is formed. The A + B + C machine with its description φ(A + B + C) forms the full
self-replicating system:

A + B + C + φ(A + B + C) ⇒ A + B + C

+ φ(A + B + C)

+ A + B + C (3.3)

Due to the capabilities of the universal constructor, it is possible to add the
description of an additional automaton D (Fig. 3.2):

A + B + C + D + φ(A + B + C + D) ⇒ A + B + C + D

+ φ(A + B + C + D)

+ A + B + C + D (3.4)

1Sometimes denoted as memory tape.
2In fact, due to presence of Garden-of-Eden states (described on p. 8), universal constructor is

not being able to construct any possible structure, but any structure that can be described upon the
description φ.
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In order to avoid the simple self-reproducing system that resembles growing crystals
rather than their biological counterparts, von Neumann postulated that D should
posses the ability of performing universal computation.

If the description φ(A + B + C + D) will be changed in such a way that only the
description of D will be affected, the whole system will still be able to reproduce, but
the overall result will be slightly different i.e.:

A + B + C + D + φ(A + B + C + D′) ⇒ A + B + C + D

+ φ(A + B + C + D′)

+ A + B + C + D′ (3.5)

The following set: A + B + C + D + φ(A + B + C + D) is then able to:

• self-reproduce

• perform any computation

• evolve (as it is robust to at least some mutation)

C
A

B
D

f(A + B + C + D)

C
A

B
D

f(A + B + C + D)

Mother unit

Daughter unit

Figure 3.2: Von Neumann’s model of self-replication: an universal constructor A, a
copying machine B, a control machine C, a universal Turing machine D. The mother
automaton, using description φ(A + B + C + D), constructs the daughter automaton
etc.

Von Neumann describes details of implementation in a system with 29 possible
states and about 2 × 105 initial cells. Due to technical limitations his work was left
unfinished for years. Decades later, in 1995 Pesavento [146] developed a simulation of
the universal constructor. The abilities of computers in the nineties were, however, still
too small to perform the simulation of full self-replication or to enhance the constructor
with the Turing machine. Attempts to simulate the full system are still taken (e.g. in
2005 Buckley published results of an analysis of the constructor [16]).

In 1973 Vitányi discussed the possibility of introducing sexual reproduction into
the von Neumann’s model [195]. In this model, the constructor uses two descriptions
φ1 and φ2, the result is not an exact copy of either parent.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Langton’s loop after: 0 (a), 16 (b), 32 (c), 64 (d), 96 (e) and 128 (f) time
cycles. Pictures generated by Golly 2.1 [158].

In 1968 Codd, by altering the states and transition rules simplified the constructor
[30]. Hutton found and corrected four significant errors in Codd’s original work and in
2010 published a complete and functioning implementation of Codd’s self-replicating
automata: “the body of the final machine occupies an area that is 22,254 cells wide
and 55,601 cells high, composed of over 45 million nonzero cells in its unsheathed form.
The data tape is 208 million cells long, and self-replication is estimated to take at least
1.7 × 1018 time steps” [79].

Beside the omission of energy, there are also other significant distinctions between
von Neumann’s model and its biological counterpart [186, p. 48], the most important
are:

1. biological self-replicators have the ability for self-maintenance in the face of
environmental perturbations,

2. von Neumann’s self-replicator builds the whole “adult” copy of itself, while
biological replication is usually divided into phases (biological organisms grow
out from babies, hatch from eggs etc.).

3.2.2 Self-replicating loops

Technical problems with the implementation of the original concept led Langton to
rethink its assumption. Because von Neumann’s self-replicator is a special case of an
extremely complex universal constructor, Langton tried to define the simplest cellular
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automaton capable of self-replication [102]. Langton distinguished between trivial and
non-trivial self reproduction. The trivial self-reproduction is driven by “physics” (i.e.
cellular rules) while non-trivial is directed by the configuration itself3. An example of
trivial self-reproduction is 254 Wolfram automata, when a cell switch its state from
quiescent one if any of its neighbour has not-quiescent state (Fig. 2.2).

This approach, known as a Langton’s loop is loosely based on one of the simplest
part of Codd’s automaton – periodic emitter. The evolution from the initial state is
presented in Fig. 3.3.

Langton not also dropped von Neumann’s original requirement of universality,
which significantly simplified the automaton, but also completely removed its ability
to evolve. Taylor noted: “Langton’s loop is very fragile in that it cannot in general
withstand perturbations and mutations, and is certainly not capable of heritable viable
mutation. McMullin [124, p. 181] describes Langton’s work as a �cruel (though of
course unintentional) parody�of von Neumann’s.” [186, p. 49]. Despite these objections,
Langton’s loop became the basis for many followers, who have coped with most of its
restrictions.

In 1989 Byl [18] demonstrated an automaton much simpler than Langton’s loop,
but still capable of non-trivial self-reproduction. In 1993 Reggia et al. designed the
smallest known self-replicating loop [155], consisting of just 5 cells embedded in 6-state
space.

In 1997 Morita and Imai proposed a simple model of a 12 state automata (the
minimum number of cells is only 4) that is capable of self-reproduction, with a large
tolerance to initial shapes[130]. This approach was also extended to three-dimensional
space [81].

An attempt to extend the Langton’s model of the possibility of carrying out
universal computation was taken by Perrier and Zahnd [145]. In this approach, a Turing
machine with its data was attached to the Langton’s loop (theoretically it is possible to
attach an universal Turing machine)4. The first stage in the Perrier’s loop is to create
a copy of Langton’s loop. The daughter loop then sends a message (special state) to
its mother which starts the Turing machine duplication (process is independent of loop
duplication). When the copy is finished, another signal activates the reproduction of
Turing machine’s data. The overall result is a copy of: the loop, the Turing machine
and its data.

Similar work was done by Tempesti [187, 188]. Tempesti’s loop has “the option
of attaching to the automaton an executable program which will be duplicated and
executed in each of the copies of the automaton” [187]. Another interesting feature is,
that his loop does not “die” after the duplication is complete 5. Tempesti’s loop is thus
better suited to finite spaces 6. Petraglio et al. have implemented arithmetic operations
in Tempesti’s loop by passing messages from one loop to another after building a
network structure through self-replication [147].

Robustness of loops was also discussed by Sayama. In 1998 Sayama introduced the
dissolving state into the Langton’s loop automaton, forming a structurally dissolvable

3Perrier and Zahnd [145] noted that the distinction is unclear, as every cellular automata
behaviour results from rules. An interesting discussion of the differentiates between physics-driven
and information-driven self-reproduction contains work: [115].

4Lerena and Courant attempted to generalise cellular automata into a new class of machines, that
are a super-class of them and also of Turing machines [107].

5Unlike Langton’s loop, which became inactive after replication.
6Langton’s loop algorithm assumes that there is always enough space for its copy.
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Figure 3.4: Self-protective Sayama loops. “Original: The attacked loop dissolves, and
the attacker continues to produce its offspring where the attacked loop was. Shielded:
The tip of the attacker’s arm dissolves while the attacked receives no damage, so the
same attack continues to occur repeatedly. Deflecting: [...]. The attacker is deceived
and begins to produce its offspring in a different direction rotated by 90 degrees
counterclockwise. Poisoning: The attacked loop generates a poison [...] at the tip of
the attacker’s arm to kill the attacker completely” [166].

self-reproducing (SDSR) loop. As Sayama noted: “the SDSR loop can dissolve its
own structure when faced with difficult situations such as a shortage of space for
self-reproduction. This mechanism (this disappearance of a subsystem of the whole
system) induces [...] potentially evolvable behaviour” [163]. The evolvable behaviour
was demonstrated a year later, after introducing several improvements to the SDSR:
“though no mechanism was explicitly provided to promote evolution, the loops varied
through direct interaction of their phenotypes, smaller individuals were naturally
selected thanks to their quicker self-reproductive ability, and the whole population
gradually evolved toward the smallest ones.” [164]. The subsequent research led to the
observation of the evolutionary growth of complexity: “[...] there were some cases where
the structural complexity of organisms characterized by the average length of organisms
and the average frequency of branching per organism increased as the population
evolved. However, an unlimited increase of structural complexity could not occur in
this model.” [165].

The next works concentrated on expanding the capabilities of loop the to protect
itself from exogenous attacks. In work [166] the following strategies of self-protection
were shortly discussed: static barrier between loop and environment, camouflage which
causes the loop to be invisible to the attacker, active reaction in order to revert
changes, redundancy in the loop’s structure and/or function. Sayama implemented
three different mechanisms: shielding, deflecting and poisoning – illustrated in Fig. 3.4,
and realized that these improvements significantly increase the diversity of loops.
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001 nop1 015 sub ac 029 cal l 043 nop0 057 nop1 071 nop1

002 nop1 016 mov ab 030 nop0 044 nop0 058 nop0 072 pop cx

003 nop1 017 adrf 031 nop0 045 push ax 059 nop0 073 pop bx

004 nop1 018 nop0 032 nop1 046 push bx 060 inc a 074 pop ax

005 zero 019 nop0 033 nop1 047 push cx 061 jnc b 075 ret

006 shl 020 nop0 034 divide 048 nop1 062 jmp 076 nop1

007 shl 021 nop1 035 jmp 049 nop0 063 nop0 077 nop1

008 shl 022 inc a 036 nop0 050 nop1 064 nop1 078 nop1

009 mov cd 023 sub ab 037 nop0 051 nop0 065 nop0 079 nop0

010 adrb 024 nop1 038 nop1 052 mov iab 066 nop1 080 i f c z

011 nop0 025 nop1 039 nop0 053 dec c 067 i f c z

012 nop0 026 nop0 040 i f c z 054 i f c z 068 nop1

013 nop0 027 nop1 041 nop1 055 jmp 069 nop0

014 nop0 028 mal 042 nop1 056 nop0 070 nop1

Listing 3.1: Self-replicating program in Tierra.

3.2.3 Core Worlds

Experiments with self-replication in so-called Core Worlds gained great popularity
among researchers. This approach was inspired by a popular programming game Core
War [39]. In this game, programs, written in a simplified assembly language, compete
for the control of the simulated core memory of a computer. The object of the game is
to terminate of all hostile programs. The Core War allows programs to self-reproduce
itself, and it soon proved to be, that the most successful programs were the ones that
used this feature.

In 1990 Rasmussen designed Core World – a system similar to Core War in which
the command that copied instructions is defective and sometimes writes a random
instruction instead of the one intended [152]. Rasmussen created a simple self-replicator
and let it run. Unfortunately his experiment failed. The programs started to copy code
into each other, and soon no proper self-replicators survived.

In the next year Thomas Ray [154] designed a Tierra system. Ray developed a
set of instructions for performing self-replication which was more robust to mutations.
Contrary to Core World, programs in Tierra must allocate memory before they have
permission to copy itself.

Ray’s first experiment was performed with self-replicating program, presented in
List. 3.1. The program shortly filled up the whole available memory, with its multiple
copies, some of them were erroneous due to “mutations”. When the memory was filled
up, Tierra automatically removed the oldest programs to make room for new ones, thus
exerting the selection pressure.

Ray observed that behaviour of his programs (or “organisms” as he called them)
became intricate: “[...] for example, some organisms were able to shrink further by
removing critical portions of their genome and then use those same portions from
more complete competitors, in a technique that Ray noted was a form of parasitism.
Arms races transpired where hosts evolved methods of eluding the parasites, and they,
in turn, evolved to get around these new defenses. Some would-be hosts, known as
hyperparasites, even evolved mechanisms for tricking the parasites into aiding them
in the copying of their own genomes. Evolution continued in all sorts of interesting
manner [...]” [134, p. 6]. It is disputable how these results were related to the knowledge
introduced into the system by Ray himself. Timothy Taylor noted: “it may be true to
say that most of the interesting behaviour that has been seen to evolve has done
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so because facilities for these behaviours were engineered into the original language
specification. For example, the fact that parasites emerge is a little less surprising
when the mechanisms of template-driven branching are considered” [186, p. 54]. Taylor
also described some next Tierra improvements which involve adding more high-level
operations like insertion, deletion and crossover operators, or new forms of mutation.
New features are directly controlled by the Tierra operating system (not by programs
themselves), thus they became part of environment’s “physics”.

In 1992 Adami began experiments with an artificial selection pressure to evolve
solutions of specific mathematical problems like adding numbers. Adami tried to define
the fitness function (known from genetic algorithms) which would give the successful
programs extra CPU cycles as a bonus. Adami was able to evolve some simple tasks
but he faced many problems in using Tierra that way. A year later in collaboration
with his colleagues, Adami developed Avida which becomes the most advanced tool for
studying self-replication and directed evolution among core worlds (see also 4.2.1 for
short description) [134, p. 6].

3.2.4 Other approaches

⇒ ⇒

⇓

⇐ ⇐

Figure 3.5: Cell division in the Universum environment [85]. Programs build wall inside
the cell. When the wall is over, the cell splits into two subcells.

In the seventies John Holland proposed the collection of self-reproduction models
referred to as α-Universes. Taylor reported [186, p. 61] that α-Universes were finally
developed by McMullin [124], however he found a number of problems which have
not been anticipated by Holland. The original theoretical considerations were then
continued by Martinez [118] (see also [86, p. 27–32]), which became the inspiration for
the Universum environment (4.3.3). In Universum self-replication was designed, but not
fully performed. The experiment was planned in a manner reminiscent of cell fission
– as presented in Fig. 3.5. The process could not continue due to the lack of program
copies.
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Figure 3.6: Self-replication in Squirm3 [77, Fig. 1].
.

Will Stevens developed the software environment for simulating kinematic self-
replicating machines which, as he states, offers a greater physical realism over cellular
automata frameworks. In his system “sliding tiles moving in a discrete two-dimensional
grid can be put together to build machines. The tiles can perform logical and mechanical
functions, and can be connected to each other” [181]. Machines can be constructed from
collections of tiles. Stevens also developed 3 dimensional version of his environment in
which the von Neumann’s constructor has been simulated [182].

Smith et al. [178] simulated self-replication in JohnyVon – an artificial physics with
continuous space (see 4.3.1). JohnyVon supports self-replication of strands of “codons”
(counterpart of genotype). The authors observed simple evolutionary behaviour, that
shorter strands were selected since they can replicate faster than longer ones. The
authors plan to introduce phenotypes (bodies) in order to achieve more interesting
variants of selection.

In a very similar approach Hutton simulated self-replication in Squirm3 – an
artificial chemistry environment (see 4.3.2)7. Self-replication occurs when the following
reaction set is defined (Fig. 3.6):

R1 : e8 + e0 → e4e3 R4 : x3 + y6 → x2y3 R7 : x2y8 → x9y1
R2 : x4y1 → x2y5 R5 : x7y3 → x4y3 R8 : x9y9 → x8 + y8
R3 : x5 + x0 → x7x6 R6 : f4f3 → f8 + f8

Results with population of self-replicating strands were similar to those obtained
by Smith, as shorter molecules became dominant. In his next work, Hutton introduced
rules that allow the emergence of simple membranes, thus self-replication occurs as a
division of simple cells. As he noted: “the reproduction of the cells is robust enough to
operate many times in a shared environment, leading to competition for resources and
space. With a mechanism for mutations to appear, the cells are capable in theory of
evolving better-adapted genomes; thus the system provides a framework for exploring
the requirements for the evolutionary growth of complexity and evolvability.” [78]

Ibáñez et al. discussed the self-inspection approach, in which the self-replicating
automaton inspects itself and produces an exact copy of the results of its inspection
[80].

Lee et al. developed a self-replicating machine in asynchronous cellular automata
[104], which more closely resemble natural systems than synchronous models. Asyn-
chronous cellular automata, considered in Lee’s article, are probabilistic automata (see
2.2) with assumed spatial isotropy. Authors believes that this approach may be espe-

7Previous attempt to simulate self-reproduction within the context of artificial chemistry was
performed by Ono and Ikegami [136, 137].
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cially beneficial in the field of nanocomputers.
There is also ongoing research work on developing a system of automatic exploration

of cellular automata space in order to find new self-replicating automata. In the nineties
Lohn and Reggia introduced the use of genetic algorithms to discover automata rules
that govern emergent self-replicating processes [111, 112]. The next works focused on
using genetic programming rather than genetic algorithm“which produced larger, more
rapidly replicating structures than past evolutionary models while requiring only a
small fraction of the computational time needed in past similar studies” [138]. The
latest results were published in 2010 by Pan and Reggia. As the authors noted: “the
replication mechanisms discovered by genetic programming work quite differently than
those of many past manually designed replicators: There is no identifiable instruction
sequence or construction arm, the replicating structures generally translate and rotate
as they reproduce, and they divide via a fissionlike process that involves highly parallel
operations. This makes replication very fast, and one cannot identify which descendant
is the parent and which is the child” [139].

3.3 Self-organization

Self-organization is a process in which the internal organization of a system increases
in complexity. Comprehensive introduction to this topic can be found in: [132]. Various
methods of measurements of complexity were presented by Adami [3], this issue was
also discussed by Ludwig [115].

Within the context of ALife studies, self-organization is often recognized as the
circumstances when the self-replicating structure may be generated spontaneously, as
the result of random events. The issue resembles the following John Maynard Smith
question from theoretical biology : “what features must be present in a system if it is
to lead to indefinitely continuing evolutionary change?” (quoted in [78])

This topic is usually analysed in conjunction with self-replication (3.2), e.g.
[71, 22, 77, 140] etc. A detailed description of an unsuccessful self-organization
experiment, performed in the Universum environment, is presented in App. D.
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Chapter 4

Simulation environments review

This chapter contains a short review of selected environments for simulating complex
behaviour: classical agent-based models (4.1), core worlds (4.2) and virtual physics
(4.3). Note, that in fact all environments mentioned in Chapt. 4 may be considered as
belonging to ABMs, thus the division of this chapter is somewhat arbitrary. The chapter
contains only abstract (but mostly real-life inspired) environments, more realistic ones,
like e-Cell1 are not considered.

4.1 Agent based models

Agent-based model (ABM) constitutes the fastest growing group of computer models.
At the moment, there are several dozen ABM models in use (it is likely that the
overall number of ABM environments exceeds hundreds). A comprehensive comparison
of various models can be found in the following papers: [5, 133, 149, 190]2. This section
contains a quick review of the most common approach i.e. general-purpose tools mostly
devoted from Swarm (4.1.1) and virtual ecosystems – environments closely related to
the aim of this dissertation (4.1.2).

4.1.1 General purpose ABM

The most popular ABM is Swarm [125] which is a software package for multi-agent
simulation of complex systems. Swarm was developed at the Santa Fe Institute: its
users meet at an annual event SwarmFest. As explained on the Swarm website: “Swarm
software comprises a set of code libraries which enable simulations of agent based
models to be written in the Objective-C or Java computer languages. These libraries
will work on a very wide range of computer platforms. The basic architecture of Swarm
is the simulation of collections of concurrently interacting agents: with this architecture,
we can implement a large variety of agent based models.”3. Gulyás et al. noted: “Swarm
has a large, and constantly growing user community spanned all over the scientific
disciplines, such as chemistry, economics, physics, anthropology, ecology, sociology and
political science” [65].

1http://www.e-cell.org/
2Good source of information about several dozens models, though not peer reviewed, is provided

by Wikipedia:
http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software

3http://www.swarm.org/index.php/Introduction_to_Swarm (accessed: April 3rd,
2010)
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Figure 4.1: Visualisation in Repast Symphony. Picture downloaded from:
http://repast.sourceforge.net/img/runtime_example.PNG (accessed:
April 3rd, 2010)

A similar approach is presented in Repast Simphony [7] (the successor of Repast
[31]) developed at the University of Chicago. Repast Simphony contains various libraries
e.g.: for genetic algorithms, neural networks, regression, random number generation,
specialised mathematics to be used in Java or Groovy computer languages. It also has
support for easy modelling and visualisation of two- or three-dimensional environments
(Fig. 4.1).

Ascape [82, 141] developed at the Brookings Institute is another tool similar
to Swarm, but should be more straightforward to people with minimal technical
knowledge. As explained on the Ascape website: “models can be developed in Ascape
using far less code than in other tools. Ascape models are easier to explore, and profound
changes to the models can be made with minimal code changes. Ascape offers a broad
array of modeling and visualization tools. A high-level framework supports complex
model design, while end-user tools make it possible for non-programmers to explore
many aspects of model dynamics.”4.

There is also some effort focusing on developing high-level languages for ABM
purposes, like Multi-Agent Modeling Language (MAML) [65], or Strictly Declarative
Modeling Language (SDML) [131] etc.

Recently, solutions based on Logo programming language – like StarLogo or
NetLogo [177], gained a large popularity, especially in educational application.

4http://ascape.sourceforge.net/index.htm (accessed: April 3rd, 2010)
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4.1.2 Virtual ecosystems

Virtual ecosystem will be understood by the ABM simulation of environment inspired
by the biological system, where a single agent represents the whole organism.

Nerve Garden

Nerve Garden is a representative group of educational rather than scientific programs.
Its aim is to “provide a compelling experience of a virtual terrarium that exhibits
properties of growth, decay, and energy transfer reminiscent of a simple ecosystem”
[35]. The project is available via web browser with VRML support5. At the moment
Nerve Garden does not support any kind of interactions between its components. The
simulation of self-replicating objects is also impossible. The authors plan to develop
the project in this direction.

Gene Pool

GenePool[193]6 is a simulation of hundreds of simple organisms called “swimbots”
residing in water. The most attractive swimbots, with better swimming skills, have
the greater opportunity to mate and to propagate its genetic information. Despite
its simplicity, GenePool allows to observe the emergence of local gene pools which
constitutes a kind of “species”.

LifeDrop

LifeDrop “is a virtual 3D ecosystem simulating a drop of water inhabited by small
creatures. Theses creatures are inspired by the Biomorphs created by Richard Dawkins
in the Blind Watchmaker. Each Biomorph is acting as an autonomous agent with its
own genotype, metabolism, morphology and behaviors. A biomorph is the result of
the development process of its DNA in the environment. Then, the success of that
phenotype determines whether or not the genes that it bears shall go forward to the
next generation. There is no female or male, but two biomorphs can mate to create
new biomorphs. Any individual born, therefore, inherits genes that have succeeded in
building a long series of successful phenotypes.”7.

SodaPlay

SodaPlay “demonstrates a great variety of form and motion using 2D graphics, in an
entertaining format. SodaPlay uses a more molecular style of physics modeling, based
on spring forces, to affect the positions and orientations of potentially large-scale spring
structures having semicoherent positions and orientations” [193, p. 95]

Evolve 4.0

Evolve 4.08 simulates a population of programs residing on a two-dimensional grid.
Each cell executes a custom language called KFORTH (portmanteau of “Ken’s Forth”),
based on the Forth programming language, with the set of high-level commands

5At the website: http://www.biota.org
6http://www.swimbots.com/
7http://www.virtual-worlds.net/projects/lifedrop.htm
8http://www.stauffercom.com/evolve4/
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Figure 4.2: Visualisation of Framstick agent [97, Fig. 2.4]

Figure 4.3: Phenotypic interpretation of genotype in Framsticks – left:
XXX(XX,X(X,X)), right: rr<X>#55<,<X>RR< <llX>LX>LX> >X [97, Fig. 2.6].

responsible for the program’s activities. The programs can grow, move, eat, reproduce,
and eventually evolve over time (algorithms responsible for evolution are embedded
into the simulator).

Framstick

Framstick [97] is one of the best known virtual environments for simulating three
dimensional agents in virtual environment, inspired by the pioneering work of Karl
Sims [175].

The Framstick’s world can be both flat or built of blocks. The boundaries can be
wrapped or surrounded by walls.

The agents consist of body and brain. The body is made of flexibly joined parts
(Fig. 4.2. Each part and joint has the following properties: position, orientation, weight
and friction, it is also possible to assign some custom properties: ability to assimilate
energy, durability of joints in collisions etc. The body is simulated using the finite
element method.

The brain of the agent consists of a simple neural network. The network can have
any kind of topology or complexity i.e. neurons may be connected with each other
in any way. The environment allows to define types of neurons used in agents, with
some predefined types. The brain communicates with the body via three receptors
(equilibrium sense, touch sense, smell – detection of energy) and two effectors (for
bending and rotating muscles).
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Figure 4.4: The artificial ecosystem: a snapshot on the left, and an ecological pyramid
on the right.[159, Fig. 1.1]

Each property of the agent is encoded in the agent’s “genotype” 9. Framstick
supports different ways of encoding an agent’s genotype – as so-called “genotype
languages”. Examples are presented in Fig. 4.3.

The environment allows performing various simulations, of both directed and open
ended evolution. A number of interesting experiments regarding emergence of complex
cognition forms is presented in [116]. Komosiński noted: “in the virtual life lab at
the Utrecht University, Framsticks is used for experiments related to evolutionary
robotics, animal locomotion, distributed intelligence, artificial ecosystems, biosemiotics,
and sexual and natural selection” [97, p. 60].

Rönkkö’s artificial ecosystem

Rönkkö’s ecosystem was described in [159]. The ecosystem is modelled using a single,
uniform, and formalised particle system. The particle system consists of a fixed and
finite number of particles. Each particle has the same shape and constant unit mass. The
dynamics of the system is governed by four primitive laws: motion (particle’s position
update), forces (description of reactions, bonds and collisions, energy absorption
(transfer of energy from one particle to another) and memory (specific information
stored in the particle). Rönkkö’s model has much in common with systems reviewed in
Sect. 4.3 (virtual physics).

The simulated ecosystem (Fig. 4.1.2) consists of:

1. Ground: 65536 particles forming an uneven landscape (256 × 256 grid). Ground
particles are fixed and immobile.

2. Clouds: A cloud is modelled by a single particle (visualisation, like in Fig. 4.1.2,
shows the cloud as a larger object). Each cloud is fixed and immobile, the cloud
emits at most one water particle within one iteration round.

3. Water: water is modelled as a collection of particles. Each water belongs to exactly
one cloud, the water particles are distributed evenly underneath the cloud. Water
may collide with any other particle excluding cloud and scent. Water is absorbed
by a root particle of a blade of grass (the initial level of energy is set to 1)

9Note, that in the biological systems genotype does not strictly encode every property of body, as
exact topology of neural network or size of body is a result of adaptation to changing environmental
conditions.
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4. Grass: grass consists of blades. A blade consists of 6 particles, two of them have
special meaning: root and emitter. The root particle absorbs energy from water,
and the emitter emits scent particles (in the same manner as water particles are
allocated to clouds). The grass may collide with any other particle excluding the
cloud and scent. The worm absorbs energy from the grass (the initial level of
energy of each particle is set to 200). When the whole energy is lost, the grass is
considered to be eliminated.

5. Worms: A worm is a string of 10 particles, two of them have special meaning:
head and emitter. The head particle is used for movement and for absorbing
energy. The emitter acts as one in the grass. The worm may collide with any
other particle excluding the cloud and scent Worm recognizes scent emitted by
the grass (attractive) and beetles (repulsive). The worm loses its energy whenever
it moves and if it comes too close to a beetle (the initial level of energy of each
particle is set to 200). When the whole energy is lost, the worm is considered to
be eliminated.

6. Beetles: A beetle consists of 58 particles with a distinct head particle, an emitter
particle, and wing muscle particles. The head particle of a beetle is used for
absorbing energy from worms, the emitter particle acts as the one in the worm
or the grass, and the wing muscle particles are used for jumping. The beetle loses
its energy whenever it jumps (the initial level of energy of each particle is set to
200). When the whole energy is lost, the beetle is considered to be eliminated.

7. Scents: A scent is modelled using a single particle. A scent particle has the initial
level of energy set to 1. Its energy is absorbed whenever it is sensed (the particle
is eliminated).

Rönkkö described various interesting simulations in the virtual ecosystem: sponta-
neous formation of rivers and ponds, growth of grass, finding edible grass by worm or
hunting dynamics (one beetle and three worms, and many worms and beetles; in both
cases all worms have been eliminated).

4.2 Core worlds

The history of core worlds was shortly described in Sect. 3.2.3. The original works of
Rasmussen [152], Ray [154] and Adami [2] led to the development of numerous similar
environments, like one of Davidge [36], De Dinechin [38], Pargellis [140], Skipper [176]
or Taylor [186].

4.2.1 Avida

Avida is the most popular Core World since the nineties and is still under active
development at the Michigan State University and at the California Institute of
Technology. It may be true to say, that Avida is also the most important and the
most influential tool in the whole field of Artificial Life (see 3.1). Papers regarding this
environment were published, among many others, in Nature [105, 106, 199] and Science
[24]. A description of the system can be found in: [2, 3, 134].
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Figure 4.5: Avida: CPU, registers, stacks, heads, memory and I/O functionality. [134,
Fig. 1.1]

Simulated world

Avida simulates fixed number of N cells. Each cell can by occupied by exactly one
program. Cells may be organised as a 2D grid with Moore neighbourhood (each cell
has 8 neighbours) or a fully connected topology (each cell is a neighbour to every other
cell) 10. After performing self-replication, a new program will replace either the parent
cell or another cell from the neighbourhood. The most common strategies are: replace
random and replace oldest.

The programs existing in each cell are run in within the context of its virtual
hardware (see below). Avida simply executes one instruction from each of its embedded
programs. In the simplest simulations, all programs are executing at the same speed,
which means that during each environment time cycle the same number of commands
of each program would be executed (30 instructions by default). It is also possible to
differentiate the speed of each program, according to the “merit” value associated with
them.

Virtual hardware

Avida consists of a virtual operating system, depicted in Fig. 4.5. The main part of the
machine is the virtual central processor unit (CPU) which executes program code (i.e.
each instruction in genome in Avida terms). Instructions operate on three registers: AX,
BX and CX, which can store a single 32-bit number. Program data can also be stored
on one of the two stacks. The memory is initialised with programs code (organism
genomes). Instructions are processed sequentially, but because memory is organised in
a circular-fashion, the CPU after executing the last instruction will loop back to the
beginning and execute again.

10It is possible to freely define new kind of topology by explicitly list each cell’s neighbours.
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Four components called heads are pointers to locations in the memory. The
instruction pointer is the only one that has a counterpart in the classical processor
(identifies the instruction being executed at the moment). The read head, and the
write head are used in executing the self-replication process. The read head is a pointer
to the instructor being read, and the write head is a pointer to the memory where the
copied instructions are being written. The flow control head helps to execute jumps
and loops (described below).

The last elements of the virtual hardware – input/output registers are used for
interaction with the environment. Each program can read data from its input register,
perform some computations and then write results to the output.

Software

Programs may consists of hundreds of different instructions, but usually a small subset
is used.

An important concept of Avida’s language is one of template matching. This is a
method of indirect addressing in order to achieve more a robust code11. The template
matching works as follows: every instruction that needs reference to another position in
memory reads its subsequent nop instructions, that forms the definition of the template
(a template will end with the first instruction other that nop). There are three type
of nop: nop-a, nop-b and nop-c. The instructions are circularly complementary
i.e. nop-a is complementary to nop-b, nop-b to nop-c and nop-c to nop-a.
The referenced point in memory is defined with the template complementary to the
one following the instruction (e.g. for template: nop-a, nop-c) it would be the first
occurrence of the following sequence: nop-b, nop-a).

Any jump operates in two steps. First, the instruction h-search is used to
position the flow control head at the desired position in memory (as it searches through
complementary templates). In the second step, the instruction mov-head perform the
jump into the point stored in the flow control head. As an example, in the following
program the executed instructions would be: 000 to 010 and 020:

000 h-search ; set flow control head
001 nop-a ; template
002 nop-c ;

... ; other instructions...
010 mov-head ; jump (to line 201)

... ; instructions to be skipped
018 nop-b ; complementary template
019 nop-c ;
020 pop ; instruction executed after mov-head

Self-replication involves three instructions. Initially, the program needs to allocate
the memory with h-alloc command. The allocation always takes place in the
program’s local memory, thus it expands the memory between the last and the first
instruction of the program (although the memory is considered to be circular, the
Avida environment will not execute instruction from just the allocated memory, as it
has knowledge of which instruction is the beginning of the program, and which is the
end).

11Compare to problems with the similar construction in the Universum environment: App D.
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Figure 4.6: Self-replication in Avida. Memory is allocated, program executes sequence
copying instruction then program splits into two independent parts [134, Fig. 1.4].

After the allocation, the program can perform the copying process via h-copy.
This instruction reads one instruction indicated by the read head, and writes it into
the place indicated by the write head. In order to achieve its perfect copy, the program
needs to initialise its read and write heads, and call h-copy for the proper number of
times.

The last instruction is h-divide, which splits the program between the read head
and the write head. If the process has been properly programmed, the parent program
should be divided into two exact parts, as presented in Fig. 4.6.

The commands used in self-replication may work erroneously with some predefined
probability. E.g. the instruction h-copymay write a random instruction to the position
of the write head instead of the one indicated by read head. The command h-divide
may randomly insert instruction into the offspring code or delete randomly chosen of
one of its instruction. Avida alsp allows for the occurrence of point (cosmic-ray like)
mutations that affect also “living” programs as well. The last source of diversity are
“implicit mutations” that are caused by errors in the self-replication algorithm executed
directly by the program.

Usually programs compete for limited space and do not interact directly. However,
it is possible to enable the inject that works similarly to h-divide with the
exception that the new offspring is inserted into the memory of another program. Such
a “parasite”, does not harm the attacked program directly, but reduces its efficiency as
it consumes its CPU cycles.

The authors are planning to extend Avida with more sophisticated program
interactions – like detecting resources, or direct communication between programs [134].

4.3 Virtual physics

The term “virtual physics” was taken from work [178]. In this section three low-
level environments will be briefly described: JohnyVon (4.3.1), Squirm3 (4.3.2) and
Universum (4.3.3). Their common feature is the apparent similarity to the molecular
dynamics method (2.1)12.

12Note, that only purely abstract environment are considered in this section.
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Figure 4.7: The two types of codons and their field states in JohnyVon. The fields of
an unbound codon are always small. The fields become large only when codons bond
together. A codon’s fields may be in a mixture of states (one field may be small and
another large). Note that codons are asymmetric. A black line in a codon that begins
in the middle of the codon and ends at the center of a colored field is called arm [178,
Tab. 1].

4.3.1 JohnyVon

The description of JohnyVon can be found in [178]. The environment simulates the
behaviour of T-shaped objects called codons (Fig. 4.7) in 2-dimensional continuous
space. The authors claim, that due to realistic physics, JohnyVon may have serious
implications for research in nanotechnology, theoretical biology, and artificial life. An
example of experiment was described on page 26.

Codons and fields

Each codon encodes 1 bit of information, as there are two types of them: 0 and 1.
Codons have an attractive or repulsive area associated with it called fields. There are
five types of fields, which are named according to their colours: purple, green, blue,
red, yellow (Fig. 4.7). Fields have two states: small and large. The state is switched as
bonds are formed and broken (e.g. small red becomes large red if it is touched by a
small blue field and if the arms of their respective codons are aligned linearly). Fields
behave somewhat like springs, they can pull codons together, push them apart, or twist
them to align their arms (e.g. if two large yellow fields intersect, a repulsive force pushes
them apart).

Physics

The environment is synchronised by a discrete clock. Each codon has one associated
one unit of mass. Collisions occurs when two codons approaching at a distance less
than 1. Codons move in a virtual liquid, a small random value is added to the codon’s
velocities at each time step to simulate Browniam motion. Liquid viscosity is simulated
via multiplying velocities by a fractional factor.
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When two codons are bonded together, the straightening force twists them to align
their bonded arms linearly. Attractive force is also exerting which pulls their bonded
arms together. The force acts similar to a spring – the strength increases linearly with
the distance between the tips (unless the distance is greater than the sum of the radii
of the fields).

Between yellow fields there occurs the repulsive force, which also act as a spring
pushing the codons apart. Contrary to the attractive force, the strength decreases
linearly with the distance (unless the distance is greater than the sum of the radii of
the fields).

4.3.2 Squirm3

Squirm3 is an abstract artificial chemistry environment (2.3), developed by Tim Hutton
[77, 78]. The environment consists of a 2-dimensional discrete lattice. Events are
synchronised by a discrete clock.

Components

The basic environment components are called atoms. Each atom is of 6 fixed types
(type ∈ {a, b, c, d, e, f}) and has a switchable state (state ∈ {0, 1, 2, . . .}). The atoms
may be bonded due to reactions. A molecule consists of two or more atoms connected
by bonds.

Physics

Each atom occupies exactly one square in the lattice. The atoms are moved around
at random – at each time step, each atom may stay remain still or move to one of
its neighbour cell (if the cell is empty). Movement is possible if the atom remains
within the neighbourhood of every atom it is bonded with. An atom may react with
its neighbouring atom.

Chemistry

Squirm3 allows for an arbitrary definition of reaction. As an example, the following
reaction: e8 + e0 → e4e3, means that an atom of type e and state 8 would react with
an atom of type e and state 0 forming a bond between them and changing their states
to 4 and 3 respectively.

4.3.3 Universum

The full environment description can be found in [83]. Various experiments were
presented in a series of papers e.g. [85, 86] etc. An example of an experiment is presented
in Fig. 3.5 on page 25.

The Universe is defined over a two-dimensional lattice of identical squares. A
square can be empty or contain any number of elements which we called atoms and
photons. The atoms are of two types: 0 and 1, and they are permanent elements of the
environment – they are not created nor annihilated during its evolution. The photons
are temporary elements, created by a reaction which dissipate energy.

The atoms occupying the same square always forms a one-dimensional string
calledparticle. The properties of a particle are fully determined by its constituents
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photon

particles

complex of particles

Figure 4.8: An example of the Universum space with particles, complexes and photons

atoms, its velocity, internal energy, orientation, and the possible bonds with adjacent
particles. The permanence of a particle depends on its bond energy, which is sum of
the bond energies between its neighbour atoms.

The particles occupying adjacent squares can bond together forming a complex of
particles. Permanence of the complex depends on its bond energy which is sum of the
bond energies between its consisting particles.

An example of the Universum space with particles, complexes and photons is
presented in Fig. 4.8.

Particles, complexes and photons can move by jumping to adjacent squares. Moves,
just like any other transformations, are synchronised by a discrete clock.

Movements and collision

During each time step, particles and complexes can move by jumping randomly to
adjoining squares in the x and y directions with probabilities proportional to their
velocities in respective directions, vx and vy. Such a rule produces random trajectories
distributed around the straight lines, which represents the deterministic continuous
movement with velocity (vx, vy).

Photons move in a similar way, by jumping to adjoining squares in the x and y
directions with probabilities: | cos ϕ|, | sin ϕ|, where ϕ is a photon direction.

When two particles (unbounded or belonging to different complexes) occupy the
adjoining squares or when a photon moves into the square occupied by a particle, a
collision occurs and the new state of environment is evaluated.

There are two types of collisions between particles: elastic and inelastic ones. The
elastic collision simply changes the participating particles velocity preserving overall
kinetic energy and overall momentum. The inelastic collision equalises the velocities
of particles preserving only the particles’ momentum. The overall environment energy
is, however, preserved because of the creation of a new photon having energy equal to
particles kinetic energy loss.

Collision between photons and particles can be divided into following types: elastic
and inelastic. Elastic collision changes photon direction only. The inelastic collision is
classified into the following sub-types:

• rebounding of the hit particle from an adjoining particle.
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SHD N ; (Shift pointer) shift pointer into the adjoining square
; in N direction

PS 1 ; (Put Stone) put the stone number 1 in the square
; indicated by the pointer

SHC ; (Shift To Corner) shift pointer into the upper left
; corner of the activity area Ω

SCN ; (Scan) Move the pointer one square in direction E. If the
; movement causes crossing of the right boundary of the
; program activity area Ω, move the pointer to the leftmost
; column in the next row. If before movement the pointer
; is in the bottom right square of Ω, terminate the
; execution of the program

CS 0, 1110 ; (Compare Substring) Compare the substring of atoms
; beginning at atom 1 (first argument + 1) in the particle
; indicated by the pointer with the second argument (1110)

JF -2 ; (Jump on false) If last comparison failed, go back
; 2 commands - to the SCN command

MOS 1 ; (Move particle to stone) Move the particle indicated
; by the pointer, and the pointer itself, into the
; square marked by stone 1. If the particle
; is a part of a complex, move the whole complex

SEL S ; (Set link) Set the bond between the particle indicated
; by the pointer and the particle occupying the adjoining
; square in direction S (if both exist)

Listing 4.1: Example of program in the Universum environment.

• setting a bond between the hit particle and the adjoining particle.

• resetting the bond between the hit particle and the adjoining particle.

• changing the order of atoms in the hit particle.

• concatenation of the hit particle and the adjoining particle.

• splitting of the hit particle into two particles.

• increasing internal energy of the hit particle.

Functional interaction

Beside the reactions taking place during collisions of particles and photons, there
also exists another class of interaction, in which particles having their individual
structure can selectively transform and move other particles in the space around them,
according to the function encoded by their atoms. This kind of interaction helps to
model various kinds of self-organization or self-modification processes, which were
impossible or very difficult to model using molecular dynamics,lattice gas automata
or cellular automata methods.

A string of atoms forming a particle is interpreted as a program written in a
specially defined assembly-like language. The string is divided into five-bit portions
which are mapped into commands (a detailed description of the language and a full
list of commands can be found in: [83]).

Functions encoded in particles can recognize the structure of particles and
complexes. They can move, split, change bonds, concatenate, change the order of atoms
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(which can change other particle function) and the orientation of affected particles and
complexes.

As an example [83], the following sequence of atoms in a particle: 01100 00010 00001
00000 00001 01111 00000 00111 00000 00000 10100 11100 01010 10000 00010 10001
00000 00001 10010 00000 10101 111 defines the function which moves and attaches to
the particles‘s north side a particle which first atoms are 1110. The sequence forms the
program depicted in List. 4.1.

Function commands operate on absolute and relative directions. Absolute direc-
tions: N, S, W, E describes squares which are north, south west and east of the particle
respectively. Relative directions: U (up), D (down), L (left), R (right) are mapped into
absolute direction according to the particle‘s orientation, i.e. a particle with orientation
N, maps relative direction: U↔ N, D↔ S, L↔ W, R↔ E; particle with orientation S
maps: U↔ S, D↔ N, L↔ E, R↔ W, etc.

Particle orientation can be changed by other particle‘s function. It can also can be
changed randomly at the end of each simulation step with preset probability.

The area of the functional activity of a particle is a square region centred around
the particle. In a given time step, the functions of particles are activated in a
randomly chosen succession. A function activated later may affect the area, which
was transformed by functions activated earlier.

The transformation induced by the particle function obeys the momentum and
energy conservation laws. There are two sources of energy for the function’s realisation:
changing the bonds between participating entities (atoms or particles), and the
particle‘s internal energy. If total energy change is positive, a photon is created and
changes are saved; otherwise all changes are withdrawn.

Universum has been successfully used for simulations of such physical processes
such as diffusion, cluster formation, chemical reaction kinetic, predator-prey system,
growth of various complex structures and self-replication processes.
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Chapter 5

The DigiHive environment

This chapter presents a new artificial world model in which various self-organization
and self-modification processes could be simulated. The model is a two dimensional
space in which there are stacks of hexagonal tiles. The system operates on two levels.
On the first level objects of the system move, collide, rebound, making bonds between
them and randomly change their structures. On the second level, some structures of
the objects are capable of inducing changes in other objects. The types of changes are
encoded in the structures of objects in specially defined Prolog-like language.

The existence of objects capable of inducing changes in other objects creates a
possibility of mutual change of structures of objects and thus the functions performed by
them. These enable the possibility of simulation of complex, global behaviour of systems
and the emergent phenomena as a result of simple, local interactions. Especially the
various self-reproduction strategies or a number of open problems in the field of artificial
life (listed in 3.1.1) can be investigated e.g. simulations of spontaneous generation of
life-like systems, novel living organization or open-ended evolution of life. The proposed
DigiHive environment could be seen as an artificial life or an artificial chemistry (with
implicit reaction laws) system or a model of an autonomous multi-agent system.

In Sect. 5.1 the first level of interaction (simplified physics) has been described.
Sect. 5.2 contains a description of the embedded language. The last section 5.3 contains
a discussion of environmental assumptions. The documentation and the results of
experiments are included in: [87, 88, 89, 96, 168, 169, 170, 172, 174].

5.1 First level: “Thermodynamics”

The environment is defined over two-dimensional continuous space with a toroidal
boundary condition.

5.1.1 Particles and complexes

The basic universe constituent objects are called particles. The particles are persistent
– they can not be created nor annihilated during the simulation. The particles are
modelled as hexagons inside circles with a radius R ∈ R

+ (typically R = 1). Particles
have its velocity (v = ivx + jvy, v ∈ R × R, position (s = isx + jsy, s ∈ R × R),
internal energy (Ei ∈ R

+), and are of 255 types (t ∈ N∩ < 0, 255 >). Each type is
connected with set of attributes1 :

1The possible setting are presented in App. A
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1. mass m(t) ∈ R
+ \ {0} – mass of particle of type t,

2. bond energy: Epb(t, t
′) ∈ R – energy needed to disrupt the bond between particle

of type t and t′,

3. activation energy: Eac ∈ R
+ – energy needed to initiate any transformation of

bonds

4. bond mask – specifies possible bond directions (described later)

The particles can bond together forming a complex of particles. The permanence of
the complex and its ability to react, depends on its constituent particles bond energies.
Particles can bind horizontally in the following directions : N, NE, SE, S, SW, NW.
Besides, in order to reduce structure surface, it is also possible to create vertical bonds:
in U (up), and D (down) directions, normal to horizontal ones. However, without any
limitations, such a possibility will end in creating very complex, hard to examine and
modify 3D structures (compare 5.2). The following restriction is then implemented:

Rule 1 (Bond limitation) The bond between particle P1 and particle P2 on P1’s
direction D can exists if and only if particle P1 has no horizontal bonds 2

As the result, complexes are build from a set of stacks of particles , different stacks
are bound together only via its bottom particles. Examples of complexes and possible
bond directions are shown in Fig. 5.1.

(a)

N

S

SE

NENW

SW

U

D

(b)

Figure 5.1: Examples of complexes: (a) the horizontal view of single stack of particles
with directions shown, and (b) the vertical view of complex formed by horizontal bonds,
where hexagons drawn by single lines represent single particles, and by double lines
represent stacks of particles and black dots mark horizontal bonds between particles

The distance between the particles should always obey the following rule:

Rule 2 (Minimal distance) 3 Particles cannot occupy the same place, unless they
form a stack of particles. The minimal distance between them (i.e. distance between
centres of particles: d = |s1 − s2|) should be not less than R

√
3 .

2Note that bond between particle P1 and P2 on P1’s direction D implicates bond between P2 and
P1 on P2’s direction U.

3The rule describes desirable state at the beginning of each time step. In fact it may be temporary
violated e.g. during particle movements.
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All processes are synchronised by a discrete clock. At the end of the time step each
particle’s position is updated according to:

s(i + 1) = s(i) + vT (5.1)

where i denotes the time cycle, T denotes the length of the time step (usually T = 1).
During movements for every pair of particles, with possible collision, calculation of the
minimal distance is performed. If the minimal distance is less than 1.4R (value chosen
empirically – see also note to rule 2) the collision procedure is resolved. According to
the preset probabilities, one of the following types of collisions is selected: perfectly
elastic or perfectly inelastic.

During the perfectly elastic collision, the assumption of conservation of the
momentum, as well as the conservation of kinetic energy, makes it possible to calculate
final velocities:

v1(i + 1) =
v1(i)(M1 − M2) + 2M2v2(i)

M1 + M2
(5.2)

v2(i + 1) =
v2(i)(M2 − M1) + 2M1v1(i)

M1 + M2

(5.3)

where v1, v2 denotes the collision-causing velocity components, i denotes the time
cycle, M1 and M2 denotes objects masses i.e. mass of complexes to which the colliding
particles belong.

After the perfectly inelastic collision only the momentum is preserved. Final
velocities are calculated according to:

v1(i + 1) = v2(i + 1) =
M1v1(i) + M2v2(i)

M1 + M2
(5.4)

where v1, v2 denotes velocities, i denotes the time cycle, M1 and M2 denotes masses.
To compensate the energy loss, a new photon (see 5.1.2) is generated with the following
energy:

Eph(i + 1) =
M1M2

2(M1 + M2)
|v1(i) − v2(i)|2 (5.5)

There is no transitional kind of collision nor any type of rotation movements.

5.1.2 Photons

In addition to permanent particles, the universe contains temporary entities called
photons , which transport energy and are created by reactions which dissipate energy.
The photons may also be emitted spontaneously by particles – after movement every
particle may (with a preset probability) convert a part (the maximal quantity of such
energy is bounded by the preset constant ) of its internal energy into a new photon.

The photons have no mass or momentum and always move with a constant velocity.
The photons are characterised by the following attributes: energy (Eph ∈ R

+ \ {0}),
position (sph = isphx + jsphy, sph ∈ R × R ) and direction angle (α ∈ R∩ < −π, π)).

At the end of each time cycle, each photon’s position is updated according to:

sph(i + 1) = sph(i) + c(i cos α + j sin α) (5.6)

where i denotes the time cycle, c ∈ R denotes photon velocity (the predefined value,
usually c = 5).
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Photons may collide with particles. Like in particle-particle collisions, there are two
types of collisions: elastic and inelastic. Elastic collisions change photon direction only
(the direction angle has a new random value). After an inelastic collision one of the
following reactions is randomly selected (each reaction has its own preset probability):

1. Rebounding of the particle hit by the photon from an adjoining particle. Requires:

• Distance between particles: d ≤ 2R · 1.1

• Particles cannot belong to the same complex

The photon is absorbed by the hit particle – its energy is transformed into the
kinetic energy of rebounded particles. New velocities are calculated according to:

v1x(i + 1) =
px ± M2

√

2βMrEph + (v1x(i) − v2x(i))2

M1 + M2

(5.7)

v1y(i + 1) =
py ∓ M2

√

2(1 − β)MrEph + (v1x(i) − v2x(i))2

M1 + M2
(5.8)

v2x(i + 1) =
px ∓ M1

√

2βMrEph + (v1x(i) − v2x(i))2

M1 + M2
(5.9)

v2y(i + 1) =
py ± M1

√

2(1 − β)MrEph + (v1x(i) − v2x(i))2

M1 + M2
(5.10)

where: v1, v2 denote the objects velocities, i denotes the time cycle, M1 and M2

denote complex masses (to which particles belong), px = M1v1x(i) + M2v2x(i),
py = M1v1y(i) + M2v2y(i), Mr = (M1 + M2)/(M1M2). The parameter β is chosen
randomly from range 0 ≤ β ≤ 1 and describes photon energy distribution for the
kinetic energy increases in x and y directions.

2. Creating a horizontal bond between the hit particle (of type t) and the adjoining
particles (of type t′). Requires:

• Distance between particles: d ≤ 2R · 1.1

• Particles cannot be bound together

• Eph ≥ Eac

• Photon energy after reaction Eph > 0

New velocities are calculated according to the equation (5.4). Besides, new photon
energy is:

Eph(i + 1) = Eph(i) − Epb(t, t
′) +

M1M2

2(M1 + M2)
|v1(i) − v2(i)|2 (5.11)

where: v1, v2 denote the objects’ velocities, i denotes the time cycle, M1 and M2

denote complex masses (into which particle belongs) and s1, s2 denote particles’
positions. If the calculated photon energy is positive, particles’ position is fixed
(the distance between any of the horizontally bound particles should be equal
to: d = R

√
3) photon randomly changes its direction and finally a new bond is

created. New particles’ positions are:
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s1(i + 1) = s1(i) (5.12)

s2(i + 1) =



































is1x(i) + j(s1y(i) + R
√

3) if dir = N

i(s1x(i) + 1.5R) + j(s1y(i) + 0.5R
√

3) if dir = NE

i(s1x(i) + 1.5R) + j(s1y(i) − 0.5R
√

3) if dir = SE

is1x(i) + j(s1y(i) − R
√

3) if dir = S

i(s1x(i) − 1.5R) + j(s1y(i) − 0.5R
√

3) if dir = SW

i(s1x(i) − 1.5R) + j(s1y(i) + 0.5R
√

3) if dir = NW

(5.13)

where dir is calculated according to:

dir =































N if ϕ ≥ −π
6

and ϕ < π
6

NE if ϕ ≥ π
6

and ϕ < π
2

SE if ϕ ≥ π
2

and ϕ < 5π
6

S if ϕ ≥ 5π
6

or ϕ < −5π
6

SW if ϕ ≥ −5π
6

and ϕ < −π
2

NW if ϕ ≥ −π
2

and ϕ < −π
6

ϕ = arctan
s2x − s1x

s2y − s1y

(5.14)

3. Creating a vertical bond between the hit particle (of type t) and the adjoining
particles (of type t′) 4.

Requires:

• Distance between particles: d ≤ 2R · 1.1

• Particles cannot be bound together

• Eph ≥ Eac

• Photon energy after reaction Eph > 0

Reaction is very similar to previous one, the only difference is, that the new
particles’ positions are calculated according to:

s1(i + 1) = s2(i + 1) = s1(i) (5.15)

4. Removing the horizontal bond between the hit particle (of type t) and the bound
particles (of type t′). Requires:

• Eph ≥ Eac

• Photon energy after reaction Eph > 0

• Particles should be bound together horizontally

After the reaction, photon energy is updated:

Eph(i + 1) = Eph(i) + Epb(t, t
′) (5.16)

Positions and velocities of participating particles are invariable.

5. Removing the vertical bond between the hit particle (of type t) and the bound
particles (of type t′). Requires:

4Counterpart of concatenating particles from previous version.
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• Eph ≥ Eac

• Photon energy after reaction Eph > 0

• Particles should be bond together vertically

The reaction is very similar to the previous one. The only difference is, that the
new particles’ positions are calculated according to the equation (5.13), where
dir is randomly chosen, s1 stands for the position of the bottom particle and s2

stand for the position of the top particle. If the top particle has some particles
bound on its U direction, the whole particle stack is relocated (the top particle
becomes the bottom particle of a new separate particle stack). After moving the
top particle to its new position, it should not overlap the position of any other
particle (the minimal distance must be preserved – rule 2) – if this requirement
cannot be fulfilled, another direction in equation (5.13) is tried.

6. Photon absorption. The photon is absorbed by the hit particle, and is converted
into its internal energy:

Ei(i + 1) = Ei(i) + Eph (5.17)

If the selected reaction cannot be completed, e.g. because of insufficient photon
energy, no other action is performed (the photon moves with the same direction in
next time cycle).

5.2 Second level: “Biochemistry”

Another class of interactions results from the assumption that the particles forming
complexes are capable of inducing reactions in their surroundings. The possible
reactions include moving the particles or creating and removing the bonds between
them. The description of the reaction is contained in the types and locations of the
particles in a complex, which is interpreted as a program written in a language described
below language. Programs can recognize and manipulate particular structures.

5.2.1 Syntax

Program syntax is similar to Prolog with the following predicates (also called
commands): program, search, action, structure, exists, bind, unbind,
move, not. Specific syntax of the above predicates (especially exists) prevent,
however, from easy transformation of the program into the valid Prolog. Similarity to
the pure Prolog is clearly visible in the overall structure and the execution algorithm
(more details are described in 5.2.2).

Language syntax in BNF notation is presented in Fig. 5.2 (see also: 1.3). An example
of a program is presented in List. 5.1 – the program recognizes the structure presented
in Fig. 5.3.

Program structure forms a tree with a root element program(). The tree
representation of the example from List. 5.1 is presented in Fig. 5.4.

5.2.2 Semantics

Program execution is based on the Prolog backtracking algorithm (e.g. [29, 84]).
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program ::= search action definitions
search ::= search() :- header .
action ::= action() :- row action {, row action } .
definitions ::= row definition {row definition }
row definition ::= header :- body.
header ::= structure( integer )
body ::= exists( exists ) {,exists( exists )} {,not( header )}

| not( header ) {,not( header )}
short ::= 0|1|2|3|4|5|6|7|8|9
integer ::= short {short}
exists ::= [not] c [[[not] bound [to f] [in d]] | [adjacent [to f] [in d] ]],

[mark f]
row action ::= bind( action spec )

| unbind( unbind spec )
| move( action spec )

action spec ::= f to f in d
unbind spec ::= f [from f] [in d]
c ::= [0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×]
f ::= V short
d ::= N|NE|SE|S|SW|NW|U|D

Figure 5.2: BNF syntax of the DigiHive language.

Each predicate returns one of the following status: OK* (this means that unification
succeed but not every possibility has been yet checked), OK (this means that unification
succeed and every possibility has been already checked) and FAIL (this means that
unification failed).

The predicates can be divided into the following groups:

1. Program structure maintaining: program, search, action, structure

Each program consists of a single, main predicate program. This predicate
always consists of the two following predicates: search and action. The first
one groups searching predicates, while the second one groups execution predicates
that can affect the neighbouring particles (by moving the particles or creating and
removing the bonds between them). “Actions” are performed only if searching
succeeded, i.e. if particular structures were recognized.

Searching commands are grouped in the structure predicates, which describe
some particular structures. These predicate groups both exists (see 2)
and other structure. The predicate structure embedded in another
structure is always in its negative form (not(structure()) – see 4), i.e.
structure description is formed by the sequence of exists predicates and the
sequence of some negative conditions. The information flow (via Vvariables) in the
embedded structures is possible only downwards, i.e. the embedded structures can
check some additional condition, but they cannot send any information upwards
(except a simple answer – structure exists or structure does not exists).

Each predicate of the group returns (note: see also 4):
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program():-
search(),
action().

search():-
structure(0).

structure(0):-
exists(000000xx mark V1),
exists(11111111 bound to V1 in N mark V2),
exists(00000000 mark V5),
not(structure(1)),
not(structure(2)).

structure(1):-
exists(11110000 bound to V2 in NW mark V3),
exists(11110000 bound to V3 in SW mark V4),
not(structure(3)).

structure(3):-
exists(00001111 bound to V4 in S).

structure(2):-
exists(10101010).

action():-
bind(V2 to V5 in SW).

Listing 5.1: Example of a program recognising the structure shown in Fig. 5.3.

• OK if every called predicate returns OK

• OK* if no one of the called predicates returns FAIL and at least one returns
OK*

• FAIL if at least one of the called predicates returns FAIL

2. Searching: exists

The predicate exists is the basic command for structure searching. It recognizes
the particle (or empty place – see 2j) of a particular type, with particular bond
structure. It also is checks the basic states and relations between two objects.

In predicate definition:

not c [not] bound to f in d, mark f

square brackets denote an optional part of the predicate. All parts are
hierarchically ordered – the nonexistence of top level elements implicates the
nonexistence of lower level parts. The hierarchy is shown in Fig. 5.5.

Depending on its final syntax, the predicate is able to (for more details see 5.2.3):
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(a)

0000
00000000

0000

1111
0000

1111
0000

0000
1111

1111
1111

(b)

0000
0000

0000
0000

1111
0000

1111
0000

0000
1111

1111
1111

Figure 5.3: Single particle and a complex of particles recognized by the program
presented in Fig. 5.1 (a), and the structure after action of the program (b).

(a) find the particle of a specified type in near space: exists [not] c.
The number of different types describes by the predicate depends on the
number of fixed bits (i.e. 0 or 1) used in c. For the given number of
fixed bits b ∈< 0, 8 >, exists c describes 2(8−b) different types and
exists not c describes 256 − 2(8−b) different types. Note that for b = 0,
exists not c (i.e. exists not xxxxxxxx) cannot find any particle
– for more information see 2j. E.g.:

i. exists 11110000 – find a particle of type 11110000

ii. exists not 11110000 – find a particle of any type but not
11110000

iii. exists 0000xxxx – find a particle of type from 00000000 to
00001111

iv. exists not 0000xxxx – find a particle of type from 00010000 to
11111111

v. exists xxxxxxxx – find a particle of any type (see also 2j for
exists not xxxxxxxx )

(b) check if the particle found in 2a is (or not is) bound to any other particle:
exists [not] c [not] bound, e.g.:

i. exists 11110000 not bound – find a particle of type 11110000
which is not bound.

ii. exists 11110000 bound – find a particle of type 11110000 which
is bound.

iii. exists not 11110000 not bound – find a particle of any type
but not 11110000 which is not bound.

(c) check if particle found in 2a is bound to a previously found particle:
exists [not] c bound to v, where v denotes a variable which
should be earlier (by some previous exists) set by a mark part (see 2k).
If v stands for an empty place (see 2j), the predicate fails. E.g.:

i. exists 11110000 bound to V1 – find a particle of type 11110000
which is bound to the particle identified by V1.

ii. exists not 11110000 bound to V1 – find a particle of any type
but not 11110000 which is bound to the particle identified by V1.

(d) check if the particle found in 2a is bound in (or not in) specified direction:
exists [not] c bound in d, e.g.:
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program()

search()

structure(0)

action()

structure(2)structure(1)

structure(3)

Figure 5.4: Example of a tree structure. The predicates: exists and bind are omitted.

i. exists 11110000 bound in N – find a particle of type 11110000
which is bound in direction N (note: see also 5.2.4 on page 61).

ii. exists not 11110000 bound in N – find a particle of any type
but not 11110000, which is bound in direction N (note: see also 5.2.4 on
page 61).

(e) check if the particle found in 2a is bound to (or not to) any other particle
in (or not in) specified direction: exists [not] c bound to v in d,
where v as described in 2c and d as in 2d, e.g.:

i. exists 11110000 bound to V1 in N – find a particle of type
11110000 which is bound in direction N to the particle identified by V1.

ii. exists not 11110000 bound to V2 in SE – find a particle of
any type but not 11110000, which is bound in direction SE to the particle
identified by V2. to the particle identified by V1.

(f) check if the particle found in 2a or the empty place found in 2j is adjacent
to any other particle or empty place: exists [not] c adjacent. This
predicate always succeeds as every object is adjacent. E.g.:

i. exists 11110000 is adjacent – find a particle of type 11110000

ii. exists not 11110000 is adjacent – find a particle of any type
but not 11110000 identified by V1.

(g) check if the particle found in 2a or the empty place found in 2j is
adjacent to any other particle (or empty place) in the specified direction:
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[not] ciexists

to vj in dj

[not] is bound
| is adjacent

Figure 5.5: Hierarchy

exists [not] c adjacent in d. This predicate always succeeds as
every object is adjacent in every direction. E.g.:

i. exists 11110000 is adjacent in N – find a particle of type
11110000.

ii. exists not 11110000 is adjacent in S – find a particle of
any type but not 11110000.

(h) check if the particle found in 2a or the empty place found in 2j is adjacent to
the specified particle (or empty place): exists [not] c adjacent to v.

The particle is adjacent to another particle if they belong to the same
complex and the distance between the particles is not greater than R

√
3.

The empty place is adjacent to another particle (or empty place) if the
distance between the objects is not greater than R

√
3.

(i) check if the particle found in 2a or the empty place found in 2j is
adjacent to the specified particle (or empty place) in the specified direction:
exists [not] c adjacent to v in d.

The particle is adjacent to another particle if they belong to the same
complex and the position of the particle specified by v is one of s2 values
calculated by the equation (5.13) where s1 is the checked object position
and dir is the specified direction.

The empty place is adjacent to another particle (or empty place) if the
position of the object specified by v is one of s2 values calculated by
the equation (5.13) where s1 is the checked object position and dir is the
specified direction.

i. exists 11110000 adjacent to V1 in N – find a particle of
type 11110000 which is adjacent in direction N to the particle identified
by V1.

ii. exists not 11110000 adjacent to V2 in S – find a particle
of any type but not 11110000 which is adjacent in direction S to the
particle identified by V2.

(j) find an empty place: exists not xxxxxxxx adjacent to v in d,
where v is as described in 2c and d as in 2d. Since exists not xxxxxxxx
cannot describe any particle (see also 2a) it describes an empty place. The
empty place must be adjacent to another particle or an empty place, i.e.
it is always related to other objects. Searching succeeds if at the described
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position (by v and d – see 2e) there does not exists any particle belonging to
the same complex as the particle (or the empty place) identified by v (note
that if d describes one of horizontal direction – i.e. U or D – searching will
always fail). E.g.

i. exists not xxxxxxx adjacent to V1 in N – find an empty
place which is adjacent to the particle identified by V1 in direction N.

(k) mark found particle or empty place in order for future use in 2c, 2d and
2e: exists [not] c [[not] bound [to v] [in d]], mark f.
As the result, the particle (or empty place) found by the predicate is bound
to the variable f. If the variable is already bound the to particle, the
predicate is interpreted as the conjunction of the current predicate and the
previous one. E.g.:

i. exists 11110000 bound to V1 in N, mark V2 – find a par-
ticle of type 11110000 which is bound in direction N (note: see also
5.2.4 on page 61) to the particle identified by V1 and store it in the V2
variable.

ii. exists not 11110000, mark V3 – find a particle of any type but
not 11110000 and store it in the V3 variable.

iii. exists 11110000, mark V3 – find a particle of type 11110000,
store it in the V3 variable
exists xxxxxxxx bound in N, mark V3 – then check if the
particle identified by V3 has any bonds in its N direction.

Predicate returns:

• OK if the particle has been found (unifying succeeded) and every particle
in near space has been checked

• OK* if the particle has been found (unifying succeeded) but not every
particle in near space has been checked

• FAIL if particle has not been found (unifying failed)

3. Execution: bind, unbind, move. The predicates of the group affect the
environment space. If any of the predicate fails, the whole program fails
(backtracking is not performed) In case of program failure, any partial changes
in space are rolled back – “everything or nothing”).

(a) move v1 to v2 in d Moves the particle identified by v1 to a place
adjacent to the particle (or the empty place) identified by v2 in direction d.
At least v1 or v2 must identify the particle, if both identify empty places or
one of them is not unified with any value, execution fails. If v1 identifies an
empty place, the predicate is changed into: move v2 to v1 in d’ where
d’ is the opposite direction of d (the opposite direction of N is S, etc.). If
both v1 and v2 identify the particles which belongs to the same complex,
the predicate checks if the position of v1 is equal to the one calculated in
3(a)ii, 3(a)iii or 3(a)iv respectively – if so, it returns OK otherwise, it returns
FAIL.

The predicate executes the following algorithm:
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i. calculate the position of the mass centre of collection: a complex
encoding program, a complex where v1 belongs and a complex into
where v2 belongs (if the object identified by v2 is not an empty
place). The position of the centre of mass is calculated according to
the equation:

sCM =

∑

N

i=1 simi
∑

N

i=1 mi

(5.18)

where N denotes the number of collection constituent particles, si

denotes particle’s position and mi denotes particle’s mass.

ii. if movement direction is horizontal, it calculates the new v1 position
according to the equation 5.13 (page 47) where s1 is the v2 position.

iii. if direction d is equal to U, it checks if the particle identified by v1 has
no horizontal bonds (see rule 1 on page 44). The new v1 position is
simply equal to the v2 position.

iv. if direction d is equal to D, it checks, if the particle identified by v2
has no horizontal bonds (see rule 1 on page 44). The new v1 position
is simply equal to the v2 position.

v. update particle’s v1 position and calculate a new position of mass
centre: s′

CM (according to the equation 5.18).

vi. if value of d = |s′
CM −sCM | > 0.25R update all positions of the particles

from the collection (see 3(a)i) according to: s′ = s + sCM − s′
CM

vii. check if no particle from collection 3(a)i overlaps with any other particle
(i.e. the minimal distance between any particles should not be less than
R
√

3 – see rule 2 on page 44). The only exception is when the predicate
moves in U or D direction – in that case it is possible that particles from
different complexes may temporarily occupy the same place (in fact rule
2 is never violated – see 5.2.4).

If all of the above steps are successful, predicate returns OK ; otherwise,
returns FAIL

(b) bind v1 to v2 in d Moves the particle identified by v1 to the place
adjacent to the particle (or the empty place) identified by v2 in direction d
and then creates a bond between them in d direction.

(c) unbind v1 from v2 Removes the bond between particles v1 and v2.

4. Helper: not

Wrapper for single structure predicate. Returns:

• OK if structure returns FAIL

• FAIL if structure returns OK or OK*

5.2.3 Internal representation

The programs written in the previously described language, are translate into the
standard Prolog and run by a built-in Prolog interpreter. The translation rules are
described later in this section. This section contains the technical details, it can be
omitted during the first reading.
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The list of the low-level predicates

The built-in interpreter contains a library of predicates which are able to search the
fact list. The fact list is a database, which contains information about nearby particles
and empty places. It is built from the following predicates:

1. particle(id, c1, ..., c8, b1, ..., b8, px, py, vx, vy, ei),
where:

• id – particle’s identity,

• c1 . . .c8 ∈ {0, 1} – denotes particle type,

• b1, . . . , b8 – contains the identities of particles bound to the current particle
in the directions: N, NE, ... NW, U, D respectively (or 0 if the current particle
is not bound).

• px, py – the position of the particle

• vx, vy – the velocity of the particle

• ei – the value of the particle’s internal energy

The predicate embodies the whole information about the particle in the
environment (5.1.1).

2. empty(id, px, py), where:

• id – the place’s identity

• px, py – the position of the place

The predicate embodies information about the empty place. This fact is added
to the list by a predicate of the same name (i.e. empty())– see 6

The interpreter supports up to 16 different variables, named: V0 to V15. Each
variable can be unified by the identity of the particle or the empty place from the
fact list, or remain unbound to any value. The variable V0 is reserved for internal
implementation, and the other ones are freely available to the program.

The built-in library contains the following predicates:

1. hastype(V, c1, ..., c8) – looks up the facts list and unifies V with the
particle identity of the specified type (see also: 2a on page 51). Returns:

(a) OK if the particle has been found (unifying succeeded) and every particle
in the fact list has been checked

(b) OK* if the particle has been found (unifying succeeded) but not every
particle in the fact list has been checked

(c) FAIL if the particle has not been found (unifying failed)

E.g.:

hastype(V1, 1, 1, _, _, 0, 0, 0, 1)

2. nhastype(V, c1, ..., c8) – looks up the fact list and unifies V with the
particle identity of the type other than the specified one (see also: 2a on page
51). Returns:
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(a) OK if the particle has been found (unifying succeeded) and every particle
in the fact list has been checked

(b) OK* if the particle has been found (unifying succeeded) but not every
particle in the fact list has been checked

(c) FAIL if the particle has not been found (unifying failed)

E.g.:

nhastype(V1, 1, 1, _, _, 0, 0, 0, 1)

3. any(V) – looks up facts list and unifies V with any fact (both the particle and
the empty place). Returns:

(a) OK if the fact has been found (unifying succeeded) and every fact in the
list has been checked

(b) OK* if the fact has beene found (unifying succeeded) but not every fact in
the list has been checked

(c) FAIL if the fact has not been found (unifying failed)

E.g.:

any(V1)

4. isbound(V1, V2, d) – checks if V1 is bound to V2 in direction d. Both V1
and d may be empty, but the predicate never unifies any variables. Returns:

(a) OK if the particle V1 is bound to V2 in direction d

(b) FAIL if V1 is not unified with the particle or is not bound to a specified
particle in a specified direction

E.g.:

isbound(V1, _, _) – V1 is bound
isbound(V1, _, N) – V1 is bound in direction N
isbound(V1, V2, _) – V1 is bound to V2
isbound(V1, V2, N) – V1 is bound to V2 in direction N

5. isadjacent(V1, V2, d) – checks if V1 is adjacent to V2 in direction d. Both
V1 and d may be empty, but the predicate never unifies any variables. Returns:

(a) OK if the object V1 is adjacent to V2 in direction d. If V2 is not unified,
also returns OK.

(b) FAIL if V1 is not adjacent to V2 in direction d

E.g.:

isadjacent(V1, V2, _) – V1 is adjacent to V2
isadjacent(V1, V2, S) – V1 is adjacent to V2 in direction N
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Command Call Implementation
program() program() program()
search() search(V1,...,V15) search(V1,...,V15)
action() action(V1,...,V15) action(V1,...,V15)
structure() expanded expanded
not(structure()) not(structure(V1,...,V15)) structure(V1,...,V15)

exists [...] expanded subprogram

ordered list of the follow-
ing predicates: hastype,
nhastype, any isbound,
isadjacent, not,
isunique, unref. More
details can be found in App. C
on page 129

bind V1 to V2 in d bind(V1, V2, d) built in
unbind V1 from V2 unbind(V1, V2, d) built in
move V1 to V2 in d move(V1, V2, d) built in

Table 5.1: Rules of translation

6. empty(V1, V2, d) – finds an empty place adjacent to V2 in N and, if found,
unifies it with V1. Returns:

(a) OK if the place has been found (unifying succeeded)

(b) FAIL if the place has not been found (unifying failed)

E.g.:

empty(V1, V2, N) – finds a place adjacent to V2 in direction N

7. not(P) – returns:

• OK if P returns FAIL

• FAIL if P returns OK or OK*

8. isunique(V1, V2, ..., V15) – returns:

• OK if V1 is unified with the value different than every other argument

• FAIL if V1 is unified with the same value as any other argument

9. unref(V) – removes any value unified with V. Always returns OK.

Translation

Commands from the first group (5.2.2) i.e.: program(), search(), action(),
not(structure())) are directly mapped into the corresponding low-level com-
mands and command structure() is expanded in the place of call. The predicates:
search(), action() and structure() operate on the whole set of variables (i.e.
V1 to V15). The set of variables passed to not(structure()) is, however, restricted
to the variables used in the top level structure (i.e. used in the mark part of the com-
mands). Every unifying made by not(structure()) has then a scope limited to
the implementation of the predicate.
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program() :-
search(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15),
action(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15).

search(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15) :-
// exists 000000XX, mark V1
hastype(V1,0,0,0,0,0,0,_,_),
isunique(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15),
// exists 11111111, bound to V1, in N, mark V2
hastype(V2,1,1,1,1,1,1,1,1),
isunique(V2,V1,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15),
any(V1),
isbound(V2,V1,N),
// exists 00000000, mark V5
hastype(V5,0,0,0,0,0,0,0,0),
isunique(V5,V1,V2,V3,V4,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15),
not(structure[1](V1,V2,_,_,V5,_,_,_,_,_,_,_,_,_,_)),
not(structure[3](V1,V2,_,_,V5,_,_,_,_,_,_,_,_,_,_)).

structure[1](V1,V2,_,_,V5,_,_,_,_,_,_,_,_,_,_) :-
// exists 11110000, bound to V2, in NW, mark V3
hastype(V3,1,1,1,1,0,0,0,0),
isunique(V3,V1,V2,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15),
any(V2),
isbound(V3, V2, NW),
// exists 11110000, bound to V3, in SW, mark V4
hastype(V4,1,1,1,1,0,0,0,0),
isunique(V4,V1,V2,V3,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15),
any(V3),
isbound(V4, V3, SW).
not(structure[2](V1,V2,V3,V4,V5,_,_,_,_,_,_,_,_,_,_)),

structure[3](V1,V2,_,_,V5,_,_,_,_,_,_,_,_,_,_) :-
// exists 00001111, bound to V4, in S
hastype(V0,0,0,0,0,1,1,1,1),
any(V4),
isbound(V0, V4, S),
unref(V0).

structure[2](V1,V2,V3,V4,V5,_,_,_,_,_,_,_,_,_,_) :-
// exists 10101010
hastype(V0,1,0,1,0,1,0,1,0),
unref(V0).

action(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15) :-
bind(V2,V5,SW).

// fact list
particle(101,0,0,0,0,0,0,0,0,0,0,0,102,0,0,0,0,28.80,20.36,0.4,0.2,1).
particle(105,0,0,0,0,1,1,1,1,0,0,0,102,0,0,0,0,31.80,20.36,0.4,0.2,1).
particle(100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25.97,17.10,-0.2,-1.1,1).
particle(103,1,1,1,1,0,0,0,0,0,104,0,0,0,102,0,0,30.30,22.96,0.4,0.2,1).
particle(102,1,1,1,1,1,1,1,1,101,0,103,0,0,0,0,0,28.80,22.09,0.4,0.2,1).
particle(104,1,1,1,1,0,0,0,0,105,0,0,0,103,0,0,0,31.80,22.09,0.4,0.2,1).

Listing 5.2: Example of a low-level program
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Similarly – action commands are directly implemented (obviously, with a slightly
different syntax). The searching command i.e. exists is, however, too complex to be
implemented in such a way. Each exists command is then expanded into the ordered
list of basic predicates: hastype, nhastype, any, isbound, isadjacent, not,
isunique, unref. The complete list of commands and corresponding subprograms
can be found in App. C.

Tab. 5.1 contains a summary of translation rules. An example of a translated
program from List. 5.1 is presented in List. 5.2.

Validation notes

Not every program can be executed successfully. A quick glance at program examples
identifies the following sources of problems with execution:

1. Empty action part of the program (the program only performs searching)

2. Wrong order of commands, e.g.: exists xxxxxxxx bound to V2 mark V1
and then exists xxxxxxxx mark V2

3. The action command refers to variables not used in the search part of the program
(i.e. always unbound to any value) – also due to the lack of any commands in the
search part of the program

In case 1, the program is simply invalid and the interpreter should not per-
formed execution (as the program cannot affect the environment space, its exe-
cution is only a waste of time). Case 2 is resolved by initialisation of the ref-
erenced variables by the predicate any, i.e. the referenced variable is always
bound to the identity of the variable or the empty place. In fact, commands:
exists [not] c [not] bound to v1 [in d] [mark v2] and
exists [not] c [not] adjacent to v1 [in d], [mark v2] binds both
v1 and v2 with some identities. The result of executing the referencing command is
then a set of values, satisfying the relation contained in this command.

Case 3 is resolved in the similar way – the search part of the program is
supplemented with the predicate any for each variable used in the action part which is
not marked by commands in the search part of the program. Note, that even a program
with a single command in the action part, and no commands in the search part is valid
and is able to be successfully executed, e.g.:

program():-
search(), action().

search().

action():-
bind(V1 to V2).

The sample program works in the following way: unifies variables V1 and V2 with
randomly chosen particles and tries to bind them together.

The above described solutions have hardly any impact on human-designed
programs, but should significantly help in executing spontaneously emerging programs.
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5.2.4 Interpreter

After the photons movements (see 5.1.2), every complex in the environment is
processed. If the complex encodes one or more programmes (see 5.2.5), it is passed
to the interpreter then translated into an internal representation and run. Just before
execution, the interpreter creates a fact list from all the nearby particles, which should
be visible to program. The nearby space around the program (i.e. the program header
particle – see 5.2.5) is called Ω. The maximal distance between the visible particle and
the program header is one of the predefined environment settings.

After database creation, the execution is performed. If both the search and action
parts of the program succeeded, the interpreter tries to apply the changes into the
environment (note that until that moment, the program only affects the fact list and
has no influence on space). The following conditions are checked:

1. Energy balance must be positive and not less than the activation energy (5.1.1). If
this is not fulfilled, the interpreter gains some energy by lowering the participating
particles’ internal energy.

2. After applying the changes the rule 2 must not be violated

If the above conditions are fulfilled, the interpreter applies the changes to the
environment. Otherwise, the program is rotated clockwise and executed again, i.e.
before another execution, every direction-related argument in predicates is changed
according to rules: N → NE, NE → SE, SE→ S, S→ SW, SW → NW, NW → N. Only
if all possibilities have been tried and failed, execution of program is cancelled. The
summary of the execution algorithm is presented in Fig. 5.6.
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Figure 5.6: Execution algorithm
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5.2.5 Encoding

As mentioned earlier, complexes may encode one or more programs. The spatial
structure of the complex is mapped into the tree representation of the program
(Fig. 5.4). Each node structure of the tree is represented by the single stack of
particles – the nodes: program, search, action exist in each program and there
is no need to encode them. Every stack encodes the list of predicates exists. Stack
which encodes the single “positive” structure forms the main stack of the program
and also encodes the predicates bind, unbind and/or move. The area of particles
visible to program (Ω – see 5.2.4) is formed as a circle of a given radius from the bottom
particle of the main stack. The program introduced in Fig. 5.1 is represented by the
structure of the particles as shown in Fig. 5.7.

structure2():-
exists 01100110

structure() :-
exists 000000xx, mark V1,
exists 11111111 bound to

V1 in N, mark V2),
exists 11110000 bound to

V2 in NW, mark V3),

structure1():-
exists 10101010

Figure 5.7: An example of a program contained in a complex. Action commands are
omitted.

The predicate not(structure()) is called from within the parent node if there
exists a horizontal bond between the stack representing the parent and the stack
representing the children nodes. If there exists more than one bond between the stacks,
only one is considered when forming a program tree. The general rule is, that the chosen
bond should be on the shortest path to the main stack. If more than one bond forms
the shortest path, the decision is make randomly – Fig. 5.8.

Fig. 5.9 shows an interpretation of the stack of particles encoding “positive”
structure, which directly defines predicate search. The stack also contains the
definition of some action commands, embodies in action. The stack encoding another
structure is similar, except for a different structure header, i.e. 1,1,0,0,×,×,×,× and
no interpretation of any action command.

The type of particle encoding specification is interpreted according to Fig. 5.2.5
for exists command and according to Fig. 5.2.5 for action commands. Bytes taken
from types of particles called “type” and “type mask” in the figure, encode first part
of exists command which contains mask of the searched particle type. The second
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Figure 5.8: Example of encoding of complex program.

byte contains information about “x” chars in mask, i.e. if the bit at the given position
is set to 0, mask contains “x” at the same position. Otherwise mask contains “1” or
“0” from the first byte, e.g.: bytes 10101010, 11100111 encode mask: 101xx010. The
pointers are encoded by a single particle – the first and the last 4 bits of particle type
form numbers from 1 to 15 that contain the number of the program variable (from V1
to V15). Direction is encoded by calculating value:

d = 1 + type mod 8 (5.19)

where type is the type of particle. The value d has the following meaning: 1 ↔ N, 2 ↔
NE, 3 ↔ SE, 4 ↔ S, 5 ↔ SW, 6 ↔ NW, 7 ↔ U, 8 ↔ D.

5.3 Summary

This chapter describes the concepts of the DigiHive simulation environment. The
DigiHive environment takes the general concept of programs embedded in the complexes
of particles from the Universum environment 4.3.3. The DigiHive environment was,
however, designed from scratch to avoid some drawbacks of the previous system.

The important application of the artificial world environments is the modelling of
spontaneous evolution of the system. To perform this effectively, small changes in the
structure of the constituent objects of the system should result in small changes in their
behaviour. The proposed declarative language has the desired feature. The removing or
changing of a part of a program may lead to small changes in the program behaviour.
E.g. removing the whole predicate structure(2) from the program presented in
List. 5.1 should affect only the effectiveness of the program, as the presence of the
particle of type 10101010 would not inhibit the reaction. Changing the single bit in the
“type” part of the exists predicate should lead to create of the same spatial structure
but from the slightly different building material etc. Such a property of the program is
the result of a tree-like structure of the Prolog language 5 (Fig. 5.4).

It is reasonably to assume that the random assembly of the DigiHive language
predicates gives a better chance of creating useful programs, i.e. programs able to
selectively change its neighborhood.

5Similar idea was the reason for the choosing of the LISP representation of trees in genetic
programming invented by Koza [100, 101].
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top
...

×,×,×,×,×,×,×,×
direction

pointer 1 and 2 (1 byte)
specification

action command header (1,1,0,0,×,×,×,×)
×,×,×,×,×,×,×,×

...
×,×,×,×,×,×,×,×

direction
pointers (2) – 1 byte

type mask
type

specification
exists header (0,0,1,1,×,×,×,×)

×,×,×,×,×,×,×,×
...

×,×,×,×,×,×,×,×
program header (1,1,1,1,×,×,×,×)

×,×,×,×,×,×,×,×
...

×,×,×,×,×,×,×,×
bottom

Figure 5.9: A stack of particles forming a program. Bytes taken from the type of the
particle.

1 – type 01 – adjacent 11 – to f 11 – in dir. d 1 – mark ff
0 – not type 10 – bound oth. - to any oth. – in any dir. 0 – do not mark

00 – not bound
1 bit 2 bits 2 bits 2 bits 1 bit

Figure 5.10: Specification of the exists predicate.

unused 00 – bind 1 – to f 1 – in dir. d
10 – move 0 – to any 0 – in any dir.
01 – unbind

4 bits 2 bits 1 bit 1 bit

Figure 5.11: Specification of the action predicates.
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It is interesting to note, that the idea of the randomly created or the randomly
evolving Prolog programs was present in the concept of Random Prolog Processing in
the field of collective intelligence [185].

In the DigiHive environment, each particle type, have some unique set of attributes
which defines low level (physical) rules that govern the environment dynamics. It opens
various possibilities, like modelling complexes of particles acting like “food” where
regrouping in them the order of particles such that the low energy bonds are replaced
by the high ones provides the energy for the other energy consuming reactions 6. Note,
that the environment can be also configured with drastically simplified energy usage
model, i.e. by using the internal energy only.

Another important feature is the relative spatial orientation of the program, i.e.
the program rotates itself clockwise after failure. Let’s consider the following example:
building a hexagonal cell wall. Without rotation, it would be necessary to construct 6
different version of programs for each wall direction (N, NE, SE, SW, S, NW). Rotation
allows to finish this task with just one version of program.

6Note, that when energy of bonds is a negative value, programs can gain energy from fission.
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Chapter 6

Simulation experiments

This Chapter contains the description of experiments performed in the DigiHive
environment. Sect. 6.1 contains a review of a few experiments that present possibilities
of the environment. Sect. 6.2.1 comprises of a detailed description of an universal
constructor (3.2.1) implemented in the environment, a few experiments with the
constructor are also discussed. Experiment results are discussed in Sect. 6.3, future
research directions are also presented in this section (including next experiments and
proposed changes in the environment).

6.1 Simple emergent behaviour examples

6.1.1 Snowflake

This simulation was initially presented at the ICANNGA’07 conference [173]. The aim
of the experiment was to demonstrate how a set of programs consequently constructs a
regular structure starting from the set of randomly distributed particles of two types.
There were five types of programs working in a sequence – the state of the structure
left by one program was recognized by the second one and so on. The programs were
able to:

P1 Joins two unbound particles and deactivates itself by unbinding one particle from
itself (removes its header) – as the result, the program acted only once during
the simulation – Fig. 6.1.

P1

⇓

Figure 6.1: Activity of P1. Initial state (uppper): two unbound particles and a stack
of particles with P1, state after P1 activity (below) – particles are bound together, P1
deactivated.
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⇒ ⇒

⇓

⇐

Figure 6.2: Activity of P2. Building a ring using the seed (two bound particles) prepared
by P1.

P2 Builds a ring of six particles by adding one particle per run, starting from two
bound particles – Fig. 6.2.

P3 recognizes the finished ring of six particles by recognising the two neighbouring
particles belonging to the same complex and not bound together. After
recognition the program creates a bond between the particles, and puts one
unbound particle inside the ring. Then it creates the a between this particle
and one particle of the ring. This bond labels finished ring – Fig. 6.3.

⇒

Figure 6.3: Activity of P3. Finishing ring, prepared by P2.

P4 recognizes the finished ring and binds a two-particle stack to the ring, outside of
it, which is the beginning of stretching arm – Fig. 6.4.

P5 recognizes the stack put by the program no. 4. If the number of particles in the
stack is less than 5, it binds one particle to the arm, binds one particle to the
stack and shifts the stack to the end (tip) of the arm.

P6 recognizes the stack of 5 particles and binds to it a two-particle stack, starting a
lateral arm. The building of the lateral arm is continued by the program 5.
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⇓

Figure 6.4: Activity of P4. Start building the stretching arm.

⇓

Figure 6.5: Activity of P5. Building the stretching arm.

The initial state of the system and the state of the successfully constructed shape are
shown in Fig. 6.8. The activities of individual programs are presented in Fig. 6.7.

To check and demonstrate the “softness” of the language and the coding, a few
experiments were run in which some bugs were injected into programs of the presented
experiment. This resulted in growth of“flakes”of different shapes, but the erroneous set
of programs still worked. The conclusion was, that small changes in programs resulted
in relatively small changes in its functioning. Examples of erroneous behaviour are
shown in Fig. 6.9.

6.1.2 Snowflake 2

Another example of forming the snowflake-like structure is presented in [96]. The shape
emerges as the result of binding the free (unbound) particles to the rising structure. At
the beginning of the simulation, the environment consists of:
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⇓

Figure 6.6: Activity of P6. Starts building the lateral arm.

1. The building material: 108 particles of type 1, 18 particles of type 2, 18 particles
of type 3.

2. The primitive cells: 2 vertical complexes of exactly 2 particles of type 4

3. 6 different programs (each program occurs twice), which:

P1 Finds the primitive cell and binds the particle of type 1 to it.

P2 Finds the particle of type 1 bound to particle of type 2, 3 or 4 on N direction,
and binds another particle of type 1 to it.

P3 Finds the string (part of the complex) of the following particles: 4, 1, 1 and
binds the free particle of type 2.

P4 Finds the particle of type 2 bound to the particle of type 1 and binds the
free particle of type 1 to it , changing the direction of the building arm by
60◦

P5 Finds the particle of type 2 bound to the particle of type 1 and binds the
free particle of type 1 to it, changing the direction of building arm by −60◦.

P6 Finds the string of the following particles: 2, 1, 1 and bind the free particle
of type 3 to it.

As the result of the simulation two structures of snowflake-like shapes emerged
(shown in Fig. 6.10).

6.1.3 Wall growth

The simulation presented in [96] shows how set a of programs can be used to expand
some existing structures in an organised way. At the beginning of the simulation the
environment consists of:

1. The building material: 80 randomly distributed particles of type 0
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Figure 6.7: Activities of individual programs during the simulation. The number on
the vertical axis represents the number of the program. Each square represents a single
execution of the program during a time cycle, described on the horizontal axis.

2. Wall: closed, hexagonal ring of particles of type 0 with one particle of type 1
bound inside

3. 4 programs inside the wall, which:

P1 binds an unbound particle of type 0 to the wall opposite the particle of type
1

P2 moves a particle of type 1 one position along the wall (counter-clockwise)

P3 moves a particle of type 1 one position into another wall if movement along
current wall is not possible

P4 moves bonds with particles bound to the particle of type 1 outside the wall

As shown in Fig. 6.11, the area bound with the initial wall expanded. As the result of
program cooperation, the particles of type 1 consequently move along the wall (counter-
clockwise). In every place it appeared, the wall was pushed outside. As long as the
building material is available the wall rises.

6.2 Toward a self-replicating system

This section describes the results of work on the implementation of the modified
von Neumann’s model (3.2.1). Original von Neumann’s model was implemented in a
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(a) (b)

(c) (d)

(c) (d)

Figure 6.8: Constructing the snowflake. The initial state of the model (a), and the state
after: 100 (b), 165 (c), 250 (d), 450 (e) and 2483 (f) time steps. In this figure (and the
next pictures in Sect. 6.1), the white dots represents stack of particles – in the first
picture (a) every stack of particles contains a program.

deterministic cellular automaton framework, fundamentally different from the DigiHive
environment. In the original model, there were no particles forming material from which
the structures are built, the state of a cell may undergo any change resulting from the
transition function of the other cells.

In the DigiHive implementation, the construction of a single self-replicating structure
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(a) (b)

(c) (d)

Figure 6.9: Effects of bugs injected into the functions encoded in particles: (a), (b).
Effects of running the program in an environment with random events enabled: (c), (d)

(single complex) X was abandoned in favour of separate structures: the universal
constructor A, the copying machine B, and their descriptions φ(A) (or φ(A + B)).
Starting from an initial population composed of at least single copies of individual
structures, we should observe their reproduction. As the result of the structure B
activity, the description φ(A+B) should be replicated, while the structure of A should
lead to the creation of copies of the structures of A and B.

Note, that the experiment is designed so it doesn’t matter the order of duplication,
there is no need to synchronize the construction with the C structure.

This dissertation concerns with the first stage, i.e. implementation of the universal
constructor A and its replication.

6.2.1 Universal constructor

The idea of an universal constructor was developed by von Neumann’s during his studies
on self-reproduction, the theoretical background was described in Sect. 3.2.1.

The universal constructor in the DigiHive environment is a structure A (a complex of
particles) being able to construct any other structure X based on its description φ(X).
It is admissible to construct the X structure via description φ(X ′) of an intermediate
structure X ′ 6= X, being able to transform itself into the X The transformation should
occur through an interaction with the environment in finite time cycles. The universal
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(a) (b)

(c) (d)

Figure 6.10: The snowflakes after 10 (a), 270 (b), 1670 (c) and 4500 (d) simulation
cycle.

constructor can be described by the following equation1:

A + φ(X ′) ⇒ A + φ(X ′) + X ′ ⇒ A + φ(X ′) + X (6.1)

or, when the obvious parts are omitted:

A + φ(X ′) ⇒ X ′ ⇒ X (6.2)

in case when X = X ′ the equation turns into its simplified form:

A + φ(X) ⇒ X (6.3)

The universal constructor is a consistent structure (a set of programs) being able
to fulfil the following tasks (see also [174]):

1. search for a valid information structure (information string) – φ(X). The
information string encodes the description of some structure φ(X), which may
be viewed as a program written in a simple universal constructor language. The
syntax of the language is presented in Fig. 1. The information string is a vertical

1The “⇒” symbol means: “becomes, according to environment laws, in finite number of time steps”.
The structure obtained as a supposed result of the simulation is marked in bold. This convention is
used in other equations presented in this chapter.
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(a) (b)

(c) (d)

Figure 6.11: Wall growth after 10 (a), 40 (b), 770 (c) and 10950 (d) simulation cycles.

complex of particles of a specified type as described in Fig. 6.13. As an example
the following program, which describes a stack of two particles of type 01010101:

PUT(01010101)
PUT(01010101)
END

can be encoded by the following stack:

11111111
01010101
00000001
01010101
00000001

2. connect to the found information string and start constructing the structure X.
The structure X consists of joined stacks of particles. There is always exactly one
stack of particles being build at the moment, called active stack X⋆.

3. sequentially process the joined string:

(a) if current particle in the information string encodes particle type (PUT
argument) – find the particle of specified type in nearest space (Ω – see
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program ::= PUT( t ) {command} END
command ::= PUT( t ) | SPLIT( d ) | NEW( t )
d ::= N|NE|SE|S|SW|NW
t ::= 0|1, 0|1, 0|1, 0|1, 0|1, 0|1, 0|1, 0|1

Figure 6.12: BNF syntax of a simple universal constructor language.

top

END (×,×,×,×,×,×,×,×)
...

direction (×,×,×,×,×,×,×,×)
SPLIT header (×,×,×,×,×,×,1,1)

...
particle type (×,×,×,×,×,×,×,×))

NEW header (1,1,1,1,1,1,0,1))
...

particle type (×,×,×,×,×,×,×,×)
PUT header (×,×,×,×,×,×,0,1)

bottom

Figure 6.13: Encoding stack. Bytes taken from type of particle.

page 61) and put it on the top of stack X⋆. The found particle is removed
from the top of stacks, beginning with particle of type 0000xx10 (Fig. 6.14)2.
This algorithm is presented in Fig. 6.15(b).

(b) if current particle in the information string encodes particle type on a new
stack (NEW argument) – disconnect the structure X and immediately start
the construction of a new structure with specified particle as the beginning
of X⋆ (a single information string can then encode various structures, e.g.
both φ(B) and φ(A), please see also additional notes on page 86 regarding
this issue).

(c) if current particle in the information string encodes particle direction
(SPLIT argument) – splits the stack X⋆ into two stacks: removes a particle
from the top, moves the trimmed stack in specified direction, and creates
a horizontal bond between X⋆ and the removed particle. The particle
becomes the bottom of the active stack X⋆. This algorithm is presented
in Fig. 6.15(b).

4. disconnects from the information string and releases the constructed structure
(i.e. a set of stacks being able to create valid programs)

Most of the above tasks can be relatively easy encoded by the language commands

2In the first attempts the universal constructor searched for single unbound particles, however
in the most complex experiments it turns out that the size of environment grows to a value that
causes significant performance problems. Building stacks were introduced as a kind of performance
improvement.
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top

particle (×,×,×,×,×,×,×,×)
...

particle (×,×,×,×,×,×,×,×)
building material header (0,0,0,0,×,×,1,0)

bottom

Figure 6.14: Source of building material.

(a) (b)

Figure 6.15: Illustration of actions of the universal constructor during processing of the
information string: (a) action caused by the command PUT. The particle of specified
type is put on the top of active stack X⋆ (draw using thicker lines), (b) action caused
by the command SPLIT. The particle is removed from the top of X⋆, then the bond
is created in the specified direction, the particle becomes a new active stack X⋆

(see 5.2). The language, however, does not allow to perform the information string
processing (task 3) as there is no conditional nor any comparing commands.

The general idea is to create the following generic programs:

T1 “find the particle <T> and begin construction of the new active stack X⋆”, where
<T> is some particle type (described by the encoding stack)

T2 “find the particle <T> and put it on the top of the constructed active stack X⋆”,
where <T> is some particle type (described by the encoding stack)

T3 “split the active stack X⋆ into two stacks and create a bond in <D> direction
between them”, where <D> is some direction

Obviously, there is no way to directly encode such generic sequences 3 (called
templates). In fact, templates are encoded as some invalid programs i.e. sequence of
inconsistent commands. Each template has also some characteristic mark (a sequence
of particles of specified type). Replacing particles between the marks, by particle from
encoding string, forms a valid program being able to recognize the encoded particle.
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Connector

P1 P7

Sensor 01010101 P8

P2 P5

P9

P6

P4

P3

P10 10101010

Base

Figure 6.16: Constructor schema – view from top.

(a)

11111111

01010101

00000001

00000000

01010101

00000001

(b)

11111111

01010101

00000001

00000000

11111100

11011100

11001100

00000001

(c)

11111111

01010101

00000001

00000000

11111100

11011100

11001100

01010101

00000001

(d)

11111111

01010101

00000001

11111100

11011100

11001100

00000000

01010101

00000001

(e)

11111111

01010101

11111100

11011100

11001100

00000001

00000000

01010101

00000001

(f)

11111111

11111100

11011100

11001100

00000001

00000000

01010101

00000001

(g)

11111111

11111100

11011100

11001100

01010101

00000001

00000000

01010101

00000001

(h)

11111111

01010101

00000001

00000000

01010101

00000001

Figure 6.17: Example of processing the information string: (a) the initial information
string encodes a single stack of two particles of type 01010101 (please compare with
the example on page 75), a single particle of type 0000000 plays the role of “junk”
information (does not encode any command), (b) the string after P1 activity – the
sensor (bold font) is inserted instead of a type particle, a type particle is joined to the
P3, (c) after P3 – particle encoding type is back in the string, (d) after P7 – the sensor
moved to the next particle in the string, (e) after P8 and P7 – the sensor moved to the
next particle in the string (“junk” skipped), (f) after P2 – the type particle joined to
the P4, (g) after P4 – particle encoding type is back in the string, (h) after P9 – the
sensor is back in the universal constructor, the string is ready for the next processing
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8 7

2 4 5

P1 P3, P4

P10

P5

P6

P8

P2

P7

P7 P7

P7

P9

Figure 6.18: Constructor state diagram.

Constructor algorithm

The universal constructor schema is presented in Fig. 6.16. This structure is able to read
and interpret the encoding stack (the information string) and translate it into another
complex. The encoding stack syntax is described in table 6.134. The constructor consists
of two types of stacks: helper stacks and programs (denote as P1, P2, ..., P8). Helper
stacks are affected by programs:

1. Connector: a single particle of type 01010001. The universal constructor joins to
the information sting by creating a bond between the connector and the bottom
of the information string on N direction.

2. Base: a single particle of type 01010000. The structure X is constructed just
below the base. The stack directly bound to the base is the structure active stack
X⋆ (see page 75).

3. Sensor: Stack of the following particles: 11001100, 11011100, 11111100. After the
connector (1) is bound to the information string, the program P1 unbinds the
sensor particles from the constructor and binds it to the constructor stack

4. State stacks: a stack of exactly two particles of type 01010101 and a stack of
exactly two particles of type 10101010. The bond between the bottom stacks
describes the current state (described later).

A full list of states with possible transitions between them is presented in Fig. 6.18.
Each state is encoded by some specified bonds between the helper stacks, as described

3It is possible however to easy encode all of particular instances of the first sequence e.g. “if
the examined particle type is 01011001 find the particle 11110000 (...)” etc. Every instance requires
separate program, so appending the specified particle can be described by 256 different particle stacks
i.e. different programs. This approach is then extremely unhandy (besides, the third subtask cannot
be resolved that way).

4In the first attempt to the experiment the encoding string was designed as a horizontal structure
(see [89]). This approach was abandoned due to performance reasons. As turns out later, the vertical
structure seems also to be much more “natural” in the DigiHive environment as it can easily emerge
during random interaction between particles, or through activities of relatively simple programs.
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Name Encoding Programs
1 Disconnected 1. Sensor unbound in D direction P1

2 Activate type recognition

1. Sensor bound in D direction

P2

2. Sensor bound in U direction
to xxxxxx01 particle
3. Sensor bound in U direction
to particle 6= 11111101
4. State stacks unbound
5. Connector and upper
state stack unbound

3 Process type recognition

1. Sensor bound in D direction

P3, P4

2. Sensor bound in U direction
to xxxxxx01 particle
3. State stacks unbound
4. Connector and upper state
stack bound

4 Activate splitting

1. Sensor bound in D direction

P5
2. Sensor bound in U direction to
xxxxxx11 particle
3. State stacks unbound
4. Connector and upper state stack
unbound

5 Process splitting

1. Sensor bound in D direction

P6
2. Sensor bound in U direction to
xxxxxx11 particle
3. State stacks unbound
4. Connector and upper state stack
bound

6 Process encoding stack
1. Sensor bound in D direction

P7, P92. Sensor bound in U direction
3. State stacks bound

7 Find valid specification
1. Sensor bound in D direction

P8to a particle of type 6= xxxxxxx1
2. State stacks unbound

8 New structure construction

1. Sensor bound in D direction

P10
2. Sensor bound in U direction to
11111101 particle
3. State stacks unbound
4. Connector and upper state stack
unbound

Table 6.1: List of constructor states
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in table 6.1. Constructor states are recognized and changed by the following programs
(the universal constructor algorithm is also presented in Fig. 6.19):

P1 Program aimed at finding the encoding stack and the beginning of translation.
Detailed algorithm:

If the constructor state is Disconnected then:

1. Find the beginning of encoding stack (i.e. vertical sequence of at least three
particles beginning with 0000xx01) – Fig. 6.17(a)

2. Unbind the sensor from the constructor

3. Unbind the second particle from the encoding stack

4. Insert the sensor to the encoding stack (instead of the substack removed in
step 3) – Fig. 6.17(b)

5. Insert the particle removed in step 3 to the proper place in P3 (P3 becomes
the valid program now)

6. Bind the upper state stack and the connector – change state to Process type
recognition (execute P3)

P2 Program aimed at preparing for searching for specified particle. Detailed
algorithm:

If the constructor state is Activate type recognition then:

1. Unbind from the encoding stack a particle next to the sensor – Fig. 6.17(f)

2. Bind the particle removed in step 1 to the proper place in P4 (P4 becomes
the valid program now)

3. Bind the connector to the upper state stack – change the state to Process
type recognition (execute P4)

P3 Template T1, after activation program aimed at searching for the specified
particle and beginning the translated stack building. Detailed algorithm:

If the constructor state is Process type recognition and P3 is the valid program
(possible only via P1 and P10 activity) then:

1. Find the single particle using the particle joined as a part of P3 by P1. The
single particle is removed from the top of stacks described in Fig. 6.14

2. Bind the found particle to the Base in direction N

3. Unbind the particle joined by P1 from itself (P3 becomes invalid in the next
time cycle)

4. Unbind the sensor from the encoding stack (joined there by P1)

5. Insert the particle from step 3 into the encoding stack (instead of the
substack removed in step 4)

6. Insert the sensor again into the encoding stack just above the particle
inserted in step 5 – see Fig. 6.17(c)

7. Unbind the connector and the upper state stack

81



P1: Find inf.
string (i.s.)

P1/P10 Activate
T1

P3: Begin
construction of X

P7: Move sensor
in the i.s.

P1: Insert sensor

into the i.s.

P10: Disconnect
X

P2: Activate T2

P5: Activate T3

P4: Put particle
on X*

P6: Split X*

P9: Disconnect X

P10: Enc.
new stack?

P2: Enc.
type?

P5: Enc.
direction?

P8/P9:
End of i.s.?

Yes

Yes

Yes

Yes

No

No

No

No

Start

Stop

Figure 6.19: Universal constructor flowchart.
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8. Bind the state stacks - change the status to Process encoding stack (execute
P7 or P9)

P4 Template T2, after activation, program aimed at searching for specified particle.
Detailed algorithm:

If the constructor state is Process type recognition and P4 is the valid program
(possible only via P2 activity) then:

1. Find the single particle using the particle joined as a part of P4 by P2. The
single particle can be found on building stacks (similar to P3).

2. Put the found particle on the top of the built stack (bond in N direction to
the base) – Fig. 6.17(a)

3. Unbind the particle joined by P2 from itself (P4 becomes invalid in the next
time cycle)

4. Unbind the sensor from the encoding stack (joined there by P2)

5. Insert the particle from step 3 into the encoding stack (instead of the
substack removed in step 4)

6. Insert the sensor again into the encoding stack just above the particle
inserted in step 5 – see Fig. 6.17(g)

7. Unbind the connector and the upper state stack

8. Bind the state stacks - change the status to Process encoding stack (execute
P7 or P9)

P5 Program aimed at preparing for splitting. Detailed algorithm:

If the constructor state is Activate splitting then:

1. Unbind from the encoding stack a particle next to the sensor

2. Bind the particle removed in step 1 to the proper place in P6 (P6 becomes
the valid program now)

3. Bind the connector to the upper state stack – change the state to Process
splitting (execute P6)

P6 Template T3, after activation, program aimed at searching for splitting. Detailed
algorithm:

If the constructor state is Process splitting and P6 is the valid program (possible
only via P5 activity) then:

1. Unbind the build stack from Base (bond in N direction to the Base)

2. Move the build stack in direction specified by the particle (i.e. its type)
joined by P5

3. Remove the top particle from the build stack (previously bond in N direction
to the base)

4. Bind the particle removed in 3 to the base

5. Unbind the particle joined by P5 from itself (P6 becomes invalid in the next
time cycle)
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6. Unbind the sensor from the encoding stack (joined there by P2)

7. Insert the particle removed in step 5 to the encoding stack (instead of the
substack removed in step 6)

8. Insert the sensor again into the encoding stack just above the particle
inserted in step 7

9. Unbind the connector and the upper state stack

10. Bind the state stacks – change the status to Process encoding stack (execute
P7 or P9)

P7 Program aimed at moving the sensor along the information string. Detailed
algorithm:

If the constructor state is Process encoding stack and there are at least two
particles above the sensor then:

1. Remove the sensor from the encoding stack

2. Insert the sensor again into the encoding stack one particle above the
previous place – see Fig. 6.17(d)

3. Unbind the State stack

Note that as a result, the constructor state will be switched into: Activate
type recognition, Activate splitting, New structure construction or Find valid
specification. The final state is determined only by the particle type above the
sensor in the encoding stack. In the next step, one of the following program will
be executed: P2, P5, P8, P10.

P8 Program aimed at skipping invalid part of information string. Detailed algorithm:

If the constructor state is Find valid specification then:

1. Bind the State stack – change the state to Process encoding stack (execute
P6) – see Fig. 6.17(e)

P9 The program’s task is to finish the translation. Detailed algorithm:

If the constructor state is Process encoding stack and there is only one particle
above the sensor in the encoding stack then:

1. Remove the sensor from the encoding stack

2. Bind sensor to the constructor at its initial place (Fig. 6.16 on page 78) –
Fig. 6.17(h)

3. Unbind the base and the build structure X – change state to Disconnected
(execute P1)

P10 Program aimed at preparing to constructing the new structure. Detailed
algorithm:

If the constructor state is New structure construction then:

1. Unbind the base and the build structure X

2. Unbind from the encoding stack a particle next to the sensor
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3. Bind the particle removed in step 2 to the proper place in P3 (P3 becomes
the valid program now)

4. Bind the connector to the upper state stack – change the state to Process
type recognition (execute P3)

Universality of constructor

The universal constructor is not fully universal, i.e. it cannot build any possible
spatial structure straightforwardly. Sequential adding the subsequent stacks in various
directions may lead to the situation where a built structure will try to occupy a place
already occupied by the constructor itself. Important limitation is also lack of possibility
of create bond between built stacks in an every possible direction. The universal
constructor can only then build a chain of particle stacks. Note, that the stacks of
particles itself are not restricted – the constructor can build any possible stack.

Figure 6.20: Examples of structures, which cannot be directly build by the universal
constructor.

Examples of problematic structures are presented in Fig. 6.20. There is no possibility
of encode the stack (or particle) with 3 or more horizontal bonds. The universal
constructor is also not able to build any closed curve of particles (or of stacks).

In [174] two possible strategies were discussed which can compensate its limitations
:

S1 – construction of set of programs which are able to cooperatively build the desired
structure in finite time cycles – Fig. 6.21(a)

S2 – construction of one intermediate structure which can transform itself into the
desired structure – Fig. 6.21(b)

There is also possible to mix the strategies, e.g. by constructing an intermediate
structure with set of programs which helps to transforms it into the desired one, etc.

6.2.2 Sample simulations

To illustrate the universal constructor’s abilities it was provided with the information
string describing a flat, rhombus-shaped complex. As a result, the programmed
structure was successfully built. The simulation screenshots are presented in Fig. 6.22.

The universal constructor has also been provided with an information string which
encodes a set of programs described in Sect. 6.1.1. After finishing their construction,
the programs gradually constructed the shape of a snowflake [170], the result of the
experiment is presented in Fig. 6.23.
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Figure 6.21: Universal constructor strategies: (a) the universal constructor A joins the
information string φ(H1), φ(H2), . . ., φ(Hn) and, using the building material from
environment E (random distributed particles and complexes), builds the set of helper
φ(H1), φ(H2), . . ., φ(Hn) programs. Helper programs interacts with environment E ′

(changed thanks to A activity, note that E ′ contains also both A and φ(H2), . . ., φ(Hn)
which in fact becomes a part of the environment at this stage of simulation). As a
result they finally build the desired structure S. Note that description of individual
programs φ(H1), φ(H2), . . ., φ(Hn) are separated by the NEW command. (b) the
universal constructor A joins the information string d(I) and builds the intermediate
structure I. The structure I interacts with environment E ′′ and finally transforms itself
into the desired structure S.

Additional notes

As Fig. 6.22(f) shows, after the construction of X is finished, the universal constructor
immediately joins the information string again and starts a new translation. As a
matter of fact, the constructor A after joining to the structure description φ(X),
forms a consistent structure suitable for performing only one task – the building of
the structure X. The desired goal was however slightly different – the A should create
different structures regarding the currently processed description.

One of the possible resolutions is to extend the information string with the
description of some other structure Z responsible for deactivation of the information
string (e.g. by appending some particle of type different than xxxxxx01 at the bottom
of the information string). To reuse it, the environment should contain at least one
structure Y responsible for activating the information string. The information string
can be then enhanced into the φ(Y +X+Z) (the information string can describe various
structures at the same time via the NEW command – see page 76). The constructor
would build at first the activator for the string Y , then the desired structure X and
at the end the structure Z that prevents another construction. While constructing X
and Z, the Y structure will probably move away due to random collision with other
particles or complexes in the environment. After the whole string is processed it is
expected that the constructor will not immediately join the information string (if Y is
far away enough). Due to random interaction with the environment, the Y structure
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: The constructor after 0 (a), 1 (b), 4 (c), 5 (d), 33 (e) and 88 (f) simulation
cycles. Pictures (a) and (b) show the initial state and the result of P1 and P3 activity
i.e. the binding of the constructor to the encoding stack, searching for a free particle
and the beginning of building a stack. Pictures (c) and (d) illustrates P5 and P6 activity
i.e. splitting . Picture (e) shows the environment after half of the simulation and the
picture (f) shows the environment after the simulation has been finished. Note that, the
constructor immediately joined the encoding string again and started a new translation.
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(a) (b)

(c) (d)

Figure 6.23: Constructing snowflake by the universal constructor: (a) step 0 – initial
state; (b) step 110 – building the programs (P1–P6); (c) step 2383 – constructing the
ring; (d) step 2910 – finished structure

should at last come close enough to the information string, to successfully activate it
again. Because the time between deactivation and activation may be quite long, the
constructor A has a chance to join another information string and to start another
construction.

A similar strategy would be to perform some modification of the universal
constructor – after completing the translation (i.e. after P9 activity) the constructor
may turn into an Inactive state (that would prevent P1 from running). The state
Disconnected may be achieved by some other structure Q activity. The description of
Q may also be added to the information string that will turn into φ(Q+X). A drawback
of this issue is that the universal constructor is no longer the consistent structure but
some distributed set of independent structures.

6.2.3 Universal constructor replication

The original von Neumann’s model of self-reproduction (3.2.1) consists of four
components: the universal constructor A, the copying machine B, the control machine C
and the universal Turing machine. Note, that in order to replicate A it is not necessary
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to implement the whole model5. This experiment was briefly described in: [170].
Starting from the random population of at least one constructor A with its

description φ(A) we should observe the multiplication of instances of A. The most
significant problems here are:

1. The universal constructor should not recognize the partially developed structure
as a part of itself, e.g. the working P2 (on page 81) should always change the P4
(on page 83) – not recognising the developed P4 inside the new structure etc.

2. The constructed programs should not work until the whole structure has been
completed.

3. The universal constructor does not allow to create a sophisticated bond structure,
as presented in Fig. 6.16, compare to: Fig. 6.20.

The problem can be resolved in one of the following ways (compare to strategies
described on p. 85):

1. By constructing another, complementary universal constructor A′, i.e. a structure
with different characteristic elements interpreting a different description syntax
φ′(X). The self-replicating system should consists of both A, A′ and their
descriptions φ(A′) and φ′(A). The process can be described by the equations:

A + φ(A′) ⇒ A + φ(A′) + A′ (6.4)

A′ + φ′(A) ⇒ A′ + φ′(A) + A

2. By constructing some intermediate structure I being able to transform itself into
the universal constructor in a finite number time cycles:

A + φ(I) ⇒ A + φ(I) + I ⇒ A + φ(I) + A + A (6.5)

3. By constructing a set of programs I1, I2, . . . , In being able to build the constructor
in a finite number of time cycles:

A +

n
∑

i=1

φ(Ii) ⇒ A +

n
∑

i=1

φ(Ii) +

n
∑

i=1

Ii ⇒ A +

n
∑

i=1

φ(Ii) +

n
∑

i=1

Ii + A (6.6)

The resolution described in 2 was chosen as a basis for the self-replication experiment.

Encoding constructor

As described above, the experiment was performed by using the intermediate structure
A′ being able to transform itself into the universal constructor. The constructed
structure was rearranged into the rhombus shape (Fig. 6.24, the shape is the same
as in the example simulation in Fig. 6.22) and enhanced by the following activator
programs: A1, A2 and A3.

5Unsuccessful attempt to construct the self-replication structure in the DigiHive environment is
presented in [96]
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Figure 6.24: Inactive constructor schema – view from top.

The inactive constructor also has to be enhanced by the inhibitor sequences
(mentioned earlier). Into all stacks (with the exception of the activator programs),
the following sequence of particle types wes introduced: 48, 171, 255, 255, 0.
While added to programs, the sequence was translated into the following predicate:
exists 11111111, mark V1 which contradicts other predicates (in every pro-
gram, the variable V1 is bound to the particle of type 11001100), i.e. prevents any
of the constructor program from being executed. The sequence was also added inside
the characteristic marks of the helper stacks and some programs (prevents from recog-
nising the constructed stacks as the part of the universal constructor, until activation).

The existence of the inhibitor sequence should also stops A1 and A2. It is done
by constructing the not(structure) predicates (see 5.2.2) which recognize the
inhibitor sequence. The predicates (stacks described as Sn on structure schema) are
bound directly to the A1 and A2 and are constructed before them.

The detailed algorithm of the activator programs:

A1 Program aimed at removing the inhibitor sequences from the surrounding stacks.
The program works only if it is not bound to the base of any universal constructor.
It should be the last constructed stack (the last active stack in a constructed
structure). The program should start immediately after P8 (page 84) activity.
Please note that the particles encoding the sequence of predicates exists
(see 5.2.2) responsible for checking condition, should occur before any action
predicate has been encoded. Otherwise the partly created program can work in
an unpredictable way.

A2 Program aimed at rearranging half of the structure. Detailed algorithm: if there
are no stacks with inhibitor sequences (possible only via A1 activity) then:

1. Find the stack of particles representing the “bottom”part of the constructor

2. Rearrange the bonds between the stacks into the valid part of the constructor
(Fig. 6.25)

A3 Program aimed at rearranging the second half of the structure and disconnecting
the activator part from the constructor. Detailed algorithm: if there are no stacks
with inhibitor sequences (possible only via A1 activity) then:
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Figure 6.25: Activating constructor – schema after A2 activity.

1. Find the stack of particles representing the “upper” part of the constructor

2. Check how the found “upper” part is connected to the “bottom” part – if the
bond connection isn’t such as after A2 activity stop the program execution

3. Rearrange the bonds between the stacks into the valid part of the constructor
(Fig. 6.26 – left part)

4. Disconnect the activation part from the constructor (Fig. 6.26 – right part)

Connector

P1 P7

Sensor 01010101 P8

P2 P5

P9

P6

P4

P3

P10 10101010

Base

Sn

A1

Sn

A2

A3

Figure 6.26: Activating constructor – schema after A3 activity. The left part consists
of a fully functional universal constructor A.

The structure I was encoded by a single stack of 3569 particles. Each stack of
particles can be interpreted as a program if only there exists particle of type 1111xxxx
(5.2.5). The stack indeed contains such a particle, so it forms a valid program of 257
exists predicates and 100 action commands. The searching part of the program
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works properly, but action commands are inconsistent, then there is no impact on
environment.

Performing simulation

The simulation has been performed in an environment of size 30×30. The universal
constructor A was placed close to the information string φ(A′) in the middle of the
environment. The building stacks were placed around, along the circle shape of radius
8 (in a distance of at least 2 particle diameters from the constructor). The prepared
building stacks consist always of the same types (apart from the header), i.e. there
is only one building stack for each type of particle. The length of stacks has been
calculated in accordance with the distribution of types in the universal constructor;
the needed number of types were rounded to the minimal number divisible by 50.
Because not every type were necessary (e.g. there is no particle of type 00001101 in
the universal constructor), the initial state consists of 96 building stacks with length
varying from 51 to 351.

In order to provide the source of energy for the programs (5.2.4), each building
particle was initially supplied with internal energy (its whole amount was equal to
58387 at the beginning). Because each building stack has also randomly chosen velocity
(from range -1 to 1 both vertically and horizontally) another source of energy comes
from its kinetic energy – creating a bond between X and the building particle acts as
an inelastic collision (see page 45).

The physics setting were set for default values, i.e.:

1. only elastic particle-particle collisions were allowed

2. the probability of a spontaneous emission of photons was set to 0 (see 5.1.2)

3. the only photon-particle collision permitted, was the inelastic one with photon
absorption and conversion into particle’s internal energy

The aim of the setting was to ensure a fully predictable run of the simulation (no
random events caused by the photons) and to guarantee the source of energy for the
participating programs.

The Ω size was set to 21, which actually means that the whole environment was in
sight of every constructor’s program. This helps to reduce the number of wasted time
cycles where no program was successfully executed.

The program rotation (5.2.4) was disabled as a very time consuming feature (the
single time cycle lasts up to 6 times longer with rotation enabled). Due to asymmetric
bonds between its state stacks (Fig. 6.16), the constructor works only with one“default”
orientation (examples from Fig. 6.22 and 6.23 were run with orientation enabled).

The simulation has been performed on a computer with Intel Q6600/2.40GHz
processor. The 6100 time cycles took about 3 months of continuous calculations.
The result is presented in Fig. 6.27. After 6080 cycles the environment consists of
both the constructor A and the inactive constructor A′. After 20 more cycles the A′

transforms itself, and the environment contains 2 equivalent universal constructors.
An universal constructor A that has just finished translation, immediately joins the
information string φ(A′) again. Another construction will certainly fail because the
second constructor Ac will disturb the synchronisation between the working programs
(after the activation of the Ac the constructor A can recognize the pieces of Ac as a
part of itself).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.27: Simulation after 0 (a), 1 (b), 1790 (c), 4735 (d), 6080 (e) and 6100
(f) simulation cycles. Note that in the last screenshots there some “flat” structures
(particles without any vertical bonds) as the result of A1 activity.
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exists ::= [not] [[c] | [like f & m]] [[[not] bound [to f] [in d]]
| [adjacent [to f] [in d] ]], [mark f]

m ::= [0|1|, 0|1, 0|1, 0|1, 0|1, 0|1, 0|1, 0|1]
c ::= [0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×]
f ::= V short
short ::= 0|1|2|3|4|5|6|7|8|9
d ::= N|NE|SE|S|SW|NW|U|D

Figure 6.28: BNF syntax of the exists predicate after allowing direct comparing.
This figure is an extension of Fig. 5.2 on p. 49.

6.3 Conclusions and further research

The above experiments show that the DigiHive environment is suitable for performing
sophisticated simulations of complex systems. Simulations with the universal construc-
tor, which is, at the moment, the most complicated complex system modelled in the
environment, highlights some weak points which have to be resolved.

The universal constructor A works, but is too complex to be used in more interesting
simulations. Apart from its poor performance, probably the most important drawback
is the lack of possibility of simulating the behaviour of a population of more than
one constructor. The interference between the constructors ensures, that any such
experiment will fail. For the similar reason, extending the constructor with the machine
B capable of copying the information string would lead to serious problems. The
machine B would be a set of programs very similar to the universal constructor, but
slightly less complicated – the main difference is, that the copying machine does not
need the programs that encode direction (P5-P6).

The problem of interference between A and B also occurs. For instance, when A
is constructing a structure, it injects a sensor into the information string (p. 79). The
sensor may be confused with the information string by B, and then may be present in
the copy of the string. On the other hand, the sensor part of B may also be confused
with the information string by A, and could be interpreted in a wrong way. In fact,
such an interference would probably lead to the halting of both A and B. The simple
solution is to extend A with a new program capable of recognising the fact of the
copying process (by B), and to extend B with a similar program capable of recognising
the fact of translation (by A). The A machine would then have some knowledge about
B and A would have some knowledge about B. This solution would probably work,
but is far from perfect.

6.3.1 Extending list of commands

The poor performance of the universal constructor is the result of technical tricks
necessary for the recognising particles encoded in the information string of for
recognising direction (see templates on p. 77).

The optimization of recognition of type, which is vital to precisely build programs,
seems to be the most important issue. If the environment language had been enhanced
with the command that allow comparing types of the particles, the universal constructor
would be much simpler.
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Figure 6.29: Encoding of the exists like predicate in a stack of particles. Bytes
taken from type of particle – extension of Fig. 5.9.

The proposed new form of the exists predicate is shown in Fig. 6.28, the encoding
schema is presented in Fig. 6.29. Apart from the abilities listed on p. 50, the new
predicate would be able to find particles of types like the one stored in a variable. It
would also be possible to adjust the accuracy of comparison via an additional mask,
e.g.

1. exists like V1 & 11110000 – find a particle of a type in which 4 first bits
are the same as in the V1 particle,

2. exists not like V6 & 11110000 – find a particle of a type in which at
least one of the 4 first bits are not the same as in the V6 particle.

The second issue, recognition of direction, can be resolved by the observation that
it is not necessary to encode the full version of the SPLIT command. The accurate
encoding of direction seems to be redundant, as the universal constructor isn’t able
of directly constructing any possible shape. Program that will interpret all forms of
SPLIT (N, NW, SW, S, SE, NE) as one particular form, e.g. SPLIT N, is sufficient
for use in the universal constructor (it is also possible encode other, specific form of
SPLIT – i.e. 6 different programs for SPLIT).

6.3.2 Horizontal bonds

The problem with the population of the constructors is related with the way of
processing the information string. The only way of processing a vertical string is to
inject some structure inside it (the sensor), which temporary change the string itself.
A possible solution is to change the way of constructing the information string into the
horizontal structure [89], so that the sensor can join in a way that will not necessarily
change the string (e.g. join horizontally to the currently processed part of the string).
This solution is unfortunately impractical due to serious performance problems (see
also annotation on p. 79).

The best solution is to allow of creating the vertical bonds at different level of stacks,
as presented in Fig. 6.30, which is at the moment forbidden by the bond limitation rule
(see p. 44. However, without any limitation, the structures as shown in Fig. 6.31, will
be allowed to emerge. This is unnecessary complicated, and leads to computational
problems during collision resolving (p. 45). In order to keep the model simple, the
stacks would be treated as ones of infinite height during collisions.
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Figure 6.30: New possible horizontal bonds. If particle 1 is bound to 2 and 2 is bound
to 5, other possible bonds are 3 to 6 and 4 to 7

Figure 6.31: Example of a structure that will still be impossible to emerge after
introducing of the new rules.

6.3.3 Distributed constructor

The above enhancements make it possible to drastically simplify the universal
constructor, which no longer needs to be a consistent spatial structure, but may be
formed as a set of independent, distributed in space parts. The proposed schema is
presented in Fig. 6.32. Note that the distributed universal constructor does not need
any horizontal bonds. Especially, due to elimination of the “activation” states (see
Tab. 6.1) the constructor no longer needs to store its internal state. The sensor also
plays the role of the connector and the base (Fig. 6.16) – after connecting to the
information string via P1, the new structure can be constructed joined directly to the
sensor. Note, that the sensor can be encoded as a negated structure containing just
one predicate: exists xxxxxxxx (means: exists any particle), which prevents any
constructed program from running.

The minimal constructor, which is being able to build its copy using a single
information string (see 6.2.3) is the set containing the following elements: Sensor,
P1, P2, P4 and P5 – note, that SPLIT command is not necessary to perform this
experiment. In fact, also P5 may be absent at the beginning of the experiment, because
it can be encoded in the information string and built via activity of other programs.

A parallel processing of the information string is quite simple, as different sensors
can be easily joined to the string.

6.3.4 Distributed self-replicator

In order to build the full self-replicator, the set from Fig. 6.32, should be enhanced
with just one program P7 (similar to P1 from Fig. 6.32), which finds a particle of
a type pointed by the sensor and puts it on the top of the constructed structure.

96



P1

Sensor

P2

P5

P6

P4

P3

Figure 6.32: Distributed constructor schema – view from top. P1 – program is looking
for the information string and connects the sensor to the string, P2 – program
encodes the PUT command, P3 – program encodes the simplified SPLIT command (see
discussion on p. 95), P4 – program encodes the NEW command, P5 – program encodes
the END command, P6 – program moves the sensor in case of“junk”information, Sensor
– counterpart of Sensor, Connector and Base from Fig. 6.16.

Contrary to other programs, P7 should move the sensor by only one step upwards
(i.e. one particle), as there is no difference between the header and the data particle
(see Fig. 6.13 and 6.17). For this reason, it is necessary to additionally create slightly
different versions of: the sensor (Sensor’) – which will not be recognized as a sensor
by other programs, P1 (P1’) and P5 (P5’) – which will operate on Sensor’ instead of
Sensor.

An expected course of the self-reproduction experiment is presented in Fig. 6.33.
Note, that the initial state does not contain every program, only the minimal set needed
to quickly start the experiment (in fact, the experiment should succeed even in case of
an absence of Sensor’, P1’ and P7’ in the initial state).

Due to its distributed form, the self-replication should be understood in terms
of increasing the concentration of its component parts. It seems to be an attractive
alternative, but may cause other problems in large environments. The concentration
of programs may be too low to maintain the efficiency of the process at a reasonable
level. The self-replicator may still be the consistent spatial structure (as in the previous
version of the universal constructor), but such a“step back”does not seem to be the best
direction of DigiHive development. Probably, simplified repulsive and attractive forces
will be the introduced in the future, that will lead to the emergence of“cell membranes”.
The membranes should allow the spatial separation of individual self-replicators in a
manner reminiscent of its biological counterparts.
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Figure 6.33: Proposed self-reproduction experiment: (a) initial state, (b) state during
experiment, (c) expected state after experiment.
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Chapter 7

Summary

This dissertation concerns the design, implementation, performing experiments and
proposition of the further research in the new simulation environment, the “artificial
world”, named DigiHive.

The environment is a complete, low-level, and closed system, obeying the
momentum and the energy conservation laws, consisting of the space, moving objects
and rules that govern their interactions. The central idea of the environment is that the
objects interacts according to the simple rules (“thermodynamics”) an simultaneously,
the structure of objects describes specific programs, which are read, interpreted and
realized by the environment (“biochemistry”). This allows to model the evolution of
objects mutually modifying their internal structures and thus their programs leading
to the emergence of new structures containing new, unpredictable programs.

The main achievements of this work are:

1. The concept of the DigiHive environment which includes:

(a) Two levels of interaction between the objects: On the basic level particles and
complexes of particles move and collide. The effects of collisions between the
objects are breaking or creation of bonds between them with an assumed
probability (from deterministic to completely random rules). This allows
for spontaneous creation of various structures. On the second level the
structures (complexes of particles) make changes (creating or breaking the
bonds) in surrounding objects according to their functions specified in a
specially defined language and coded in their structures.

(b) A new, declarative, high level, Prolog-like language encoded in the structures
of the particles. The language has a small set of instructions, that allows
the program to selectively create and break bonds between particles in its
nearest space. To some extend, the language has also “soft” features, i.e.
small changes in program code usually lead to relatively small changes in
program behaviour

2. The successful implementation of the DigiHive environment, which was related to
the number of technical problems that have been resolved, e.g.:

(a) the translation of a high level Prolog-like program into the Prolog program,

(b) the Prolog interpreter has been implemented and embedded into the
environment,
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3. The various simulations performed, which confirmed the utility of the environ-
ment in simulating the various aspects of evolution of complex systems. The
simulations may be classified into two groups:

(a) The interaction of complexes of particles showing emergent behaviour,

(b) The implementation of the universal constructor which constructs complexes
of particles on the base of the description contained in other complexes.

The already performed experiments, especially with the universal constructor, give
rise to the ideas for the number of the environment’s modifications (described in
Sect. 6.3), which are currently being introduced. Especially the poor performance of
the environment makes it difficult to perform the large scale simulations. Pending
further research include the completion of the self-replication system and comparison
of dynamics of various self-replication systems working in the random environment.
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Appendix A

The DigiHive environment details

This chapter contains an instruction for use of the DigiHive application. Sect. 1.1
describes program installation. Sect. 1.2 contains executable file specifications and an
interface guide. Sect. 1.3 contains a detailed description of state files, which are basic
tools for preparing simulations. Sect. 1.4 describes experiment files, that automatise
user activities during long-term experiments.

1.1 Installation

Downloable zip files can be found on the project website [168]. After downloading, the
files should be simply unpacked into the preferred location. Before the program can
run, it is required to install the GTK Runtime library (also available on the project
website1).

The environment was developed in C++, using Microsoft Visual Studio 2005
Express Edition IDE. The program requires an MS Windows 2000, XP or Vista
operating systems (tested also on 64bit versions). The memory requirements depend
on running the simulation, on the biggest performed (6.2.3) the application allocates
about 40MB of RAM. The executable files needs about 2.5MB of disc space, the GTK
Runtimes needs additionally over 27MB of space.

The DigiHive doesn’t use any hardware or system specific features, it is possible
to prepare versions on other operating systems with GTK Runtime support. This
possibility was successfully tested on various Linux versions, however versions other
than for MS Windows aren’t fully maintained.

1.1.1 File structure

After unpacking, the DigiHive environment has the following file structure:

$DIGIHIVE_FOLDER$ – the folder where files are unpacked
+- bin – executable files
+- dtd – dtd files for each environment’s xml
+- settings – settings files (1.3.3)
+- save – default folder for experiment definition files (1.4)
+- bin – default folder for binary state files (1.3.1)
+- xml – default folder for xml state files (1.3.2)

1latest version is available on the GIMP website: http://www.gimp.org/~tml/gimp/win32/
downloads.html
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+- src – environment sources

1.2 Running

The environment starts after running the digihive.exe in MS Windows (./digihive
in Unix based systems). The file can be found in $DIGIHIVE_FOLDER$/bin/ folder.
When no options are given, the program runs in default GTK mode (displays the
interface – 1.2.1) with no data loaded. The file specification:

digihive.exe [[-t file] | [[-lb | -lx | -le] file [-r]]]
[-lgd] [-lgt] [-version] [-help]

-t file: runs the environment in text mode (no user interface is displayed),
loads and immediately runs the specified experiment file (1.4),

-lb file: runs DigiHive in GTK mode, loads the specified binary file (1.3.1),
-lx file: runs DigiHive in GTK mode, loads the specified xml file (1.3.2),
-le file: runs DigiHive in GTK mode, loads the specified experiment file (1.4),
-r: runs the simulation immediately after load,
-lgd: prints a detail debug log during environment running. Note: the output,

stream may contain a large amount of data. It is strongly recommended to
write logs to the output log file. This option should be used with care, only
while some bugs in the environment are suspected.

-lgt: prints detailed information about the program running during the simulation.
Note: the output stream may contain a large amount of data. This option
should be used with care, only while debugging the simulation programs.

-version: prints the environment version and the last build date,
-help: prints a list of options.

1.2.1 Interface

User interface is displayed only when the environment is running in GTK mode (1.2).
The screenshot from the main window is presented in Fig. A.1.

Menu

Program menu contains the following options:

1. File

(a) Open Binary: loads the environment state from a binary file (see 1.3.1).
Option accessible also from the toolbar.

(b) Open XML: loads the environment state from an XML file (see 1.3.2).

(c) Save as Binary: saves the current state as a binary file (see 1.3.1). Option
accessible also from the toolbar.

(d) Save as XML: saves the current state as an XML file (see 1.3.2).

(e) Save as JPEG: saves the current screen as JPEG file.
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Figure A.1: Main window. Simulation is running – state after 407 time cycles. Last step
took 0.14s, the whole simulation took 33.33s, an average time step took 0.08s.

(f) Save as EPS: saves the current screen as EPS file.

(g) Open Experiment: opens the experiment definition file (see 1.4). Name of
the experiment is displayed on the application’s title bar.

(h) Exit: closes the environment

2. Simulation

(a) Start: starts the simulation. The environment state should be previously
loaded via one of the “Open” options. The option is also accessible from the
toolbar. If the state was loaded via the Experiment definition file (1.4) each
step may be related with saving additional information into experiment files.

(b) Stop: stops the simulation, this option is available if the simulation is started.
The option is also accessible also from the toolbar.

(c) Step: executes one step of the simulation. The environment state should
be previously loaded with one of the “Open” options. The option is also
accessible from the toolbar.

(d) Statistics: displays basic statistics of the environment – the same as stored
during the experiment (see 1.4), with the exception of program listings.

3. Options
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Figure A.2: Complex details

(a) Settings: displays the dialog window that allows to manually change the
environment settings – the same as contained in the setting part of the
XML file (see 1.3.2).

(b) Element Table: displays the table with the chemical properties of each
particle type: mass, bond mask, maximal bond count, and bond energy
between any particle types.

(c) Show Photons: shows or hides the photons in the environment screen.

4. Help

(a) About: displays the version and the build date.

Complex details

Click the left mouse button on the particle showed in the main window, this displays its
details as shown in Fig. A.2. The window is divided into 3 section: Preview, Complex
and Programs.

The Preview section contains a magnified view of the selected particle and its
neighbourhood. The horizontal bonds are drawn using lines, particles with vertical
bonds are drawn using double lines. The particle selected in the main window is marked
with an asterisk.

The Complex section contains a list of all the particles forming the complex to
which the selected particle belongs. The following attributes are shown: id, type, bonds
in all directions, position, velocity, mass, kinetic energy, inner energy. The attributes
belonging to the selected particle are printed in bold. The navigation buttons in the
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Figure A.3: Program trace

lower part of the section change the selected particle (moves the asterisk in the Preview
section in the direction according to the label on the button).

The Programs section lists all the programs contained in the complex to which the
selected particle belongs. The buttons Prev and Next navigate through the list. The
button Trace opens the simple debugger, described below.

Debugger

The Debugger window as shown in Fig. A.3 consists of 3 sections: Listing, Omega Space
and Trace. When the window is open, the environment stops before trying to execute
the currently displayed program.

The Listing section shows a listing of the programs being debugged. The currently
executed command is printed with the bold font. The lower part of the section contains
the following buttons:

• Run: runs the currently displayed program, the debugger will eventually stop
later during another attempt to execute the program.

• Step Into: runs exactly one command of the currently displayed program (i.e. if
the command is related to the subprogram e.g. the predicate search is related
to a set of other commands, the debugger will jump into the subprogram),

• Step Over: runs one command of the currently displayed program (i.e. if the
command is related with subprogram e.g. predicate search is related to the set
of other commands, the debugger will skip the subprogram).
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The Omega Space section displays a view of the omega space at each step of the
program. The section is especially helpful in an examination of the effects of the action
commands.

The Trace section presents the exact trace of the program. Each predicate call and
each result is logged. The section is especially helpful in an examination of the search
part of the program

1.3 DigiHive state

The environment state can be saved and read in binary files (1.3.1) or xml definition
files (1.3.2). Sets of environment settings are stored in settings files (1.3.3).

1.3.1 Binary files

Binary files (of type .unv) contain an exact snapshot of some DigiHive states i.e. –
position and attributes of particles, complexes and photons. Contrary to the xml
definition files (1.3.2), after reading the binary file it is always guaranteed that the
environment state will be fully restored – for that reason, it is strongly recommended
that the temporary simulation files (1.4) are stored as binary files only.

1.3.2 XML definition files

The XML2 files are designed to prepare some initial state of the environment. It is
possible to store an exact state of the environment, but it is also possible to describe
some general state with partial information only (e.g. without position and velocity
of every possible particle etc.). The XML file contains a list of sequentially processed
commands being able to put particles, complexes and photons in the environment. The
XML syntax is described in the universum.dtd file (available on the DigiHive website
[168]3). A detailed description of creating the XML and DTD files can be found in
[153].

The document element is formed by the tag <universum>. For this tag it is
required to set the following attributes: width means the horizontal size of the
environment, height means the vertical size of the environment and ccn means the
current simulation cycle. The tag is a container containing the following tags:

1. <settings> – environment settings,

2. <particles> – particle definitions,

3. <programs> – program definitions,

4. <complexes> – complex definitions,

5. <photons> – photon definitions,

6. <multiply> – multiplication of previous definitions.

The following example of a definition file describes the simulation with no particles,
complexes or photons in a space of size 100 · 100

2Due to large size of XML file it is recommended to store them in compressed folder
3http://www.digihive.pl/dtd/universum.dtd
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE universum SYSTEM

"http://www.digihive.pl/dtd/universum.dtd">
<universum ccn="1" width="100" height="100">

<settings/>
<particles/>
<programs/>
<complexes/>

</universum>

Settings

The settings are loaded form an external settings file (1.3.3), according to its name
in the template attribute (if the attribute is absent, the default settings are
loaded). It is also possible to quickly change the physical settings according to the
nested tags: settings-common, settings-particles, settings-photons,
settings-programs which are counterparts of the tags nested in the physics tag
of the setting file. An example of the settings:

<settings template="self-organization">
<settings-particles prob-col-elastic="0.8" />

</settings>

Particle defition

A definition of particles is contained in the tag <particles>. The single particle is
described by the tag <particle> with the following attributes:

1. id – the unique identifier of a particle: positive integer value between 0 and
65535, e.g. id="1". If the attribute is absent, it takes some random value. An
exact definition of the identifier allows future reference in the program or the
multiply block,

2. ei – internal energy (5.1.1): positive real value, e.g. ei="0.25". If absent, the
the internal energy is set to 0,

3. type – particle type (5.1.1): positive real value, e.g. type="15". This attribute
is obligatory.

The particle position in the environment space can be determined by the embedded
tag <position>. Its attributes x and y describe respectively horizontal and vertical
position of particle. If the tag or its attributes are absent, the position is randomly
chosen. The particle velocity is determined in the similar way, via the velocity tag
and its attributes x i y, describing the horizontal and vertical velocity of the particle.

An example of the particle definition block:

<particles>
<particle type="1" ei="0"/> <!-- particle of type 1 -->
<particle type="4" ei="0"> <!-- particle of type 4 -->

<position x="4" y="1"/> <!-- position of particle -->
</particle>
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<particle type="2" id="1">
<!-- particle of type 2 and id 1 -->

<position x="2" y="4"/> <!-- position of particle -->
<velocity x="1" y="1"/> <!-- velocity of particle -->

</particle>
</particles>

Program definitions

Program definitions are contained in the tag <programs>. It is possible to define
the whole program with the tag <program> and the negated structure with
<not-structure>. Each of the tags forms a unique stack of particles (separated
complex), in fact it is one of the methods of creating complexes (see 1.3.2). For the
tag <program>, the stack always begins with a particle of type 11110000, for the tag
<not-structure> with the particle of type 11000000 (see 5.2.5).

A list of attributes of the <program> and <not-structure> tag:

1. id – the unique identifier of the stack (complex). As due to the next commands
in the xml file, the complex may be changed, it is not guaranteed that the id will
remain constant,

2. particleid – the unique identifier of the bottom particle of the stack. It is
the counterpart of the id attribute in particle definitions. This identifier will
remain constant as particles cannot be changed irrespective of other processed
commands.

The tag <program> contains the following tags:

1. <position> – the position of the first bottom particle of the complex (the same
as in the particle definition block),

2. <velocity> – the velocity of the complex (the same as in the particle definition
block),

3. <search> – the searching block,

4. <actions> – the activity block.

The searching block consists of exactly one tag <structure> and at most 6 tags
<not-structure> (the limitation is due to the assumed method of encoding the
program structure). The <not-structure> tag, when contained in a program (not
as a separated stack) may also have the following attribute:

1. dir – the direction in which, the stack encoding the negated structure is bound
to the main stack of the program. Possible values are: N, NE, NW, SW, S, SE.

An example of the program block:

<programs>
<not-structure />
<program id="1" particleId="10">

<position x="2" y="4"/>
<velocity x="1" y="1"/>
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<search>
<structure>
...
</structure>
<not-structure particleId="1" dir="NE">
...
</not-structure>

</search>
<action/>

</program>
</programs>

Both tags: <structure> and <not-structure> contain the sequence of
commands encoded via the <exists> tags or directly by <particle> tags.

The <exists> tag encodes the predicate exists. The nested tags encode the
following parts of the predicate:

1. <type> –checks the type of the particle. Possible value is a sequence of 8 chars:
0, 1 or X, e.g. <type>00000001</type> means: exists 00000001,

2. <not-type> –checks if the type of the particle is not as given. Possible value
is a sequence of 8 chars: 0, 1 or X, e.g. <not-type>XX000001</not-type>
means: exists not XX000001,

3. <is-bound> – checks if the particle is bound to any other particle. The tag may
nest the following additional conditions:

(a) <in> – sets the direction in which a bond should be checked. Possible values
are: N, NE, NW, SW, S, SE, e.g. <is-bound><in>N</in></is-bound>,

(b) <to> – the variable with the stored particle to which the current particle is
bound. Possible values are: V1, V2, . . ., V15, e.g. <is-bound><to>V5</to>
</is-bound>,

4. <not-is-bound> – checks if the particle is not bound to any other particle,
the tag may nest additional conditions same as <is-bound>,

5. <is-adjacent> –checks if the particle is adjacent to any other particle, the
tag may nest additional conditions same as <is-bound>,

6. <mark> – the variable in which the particle will be stored. Possible values are:
V1, V2, . . ., V15, e.g. <mark>V1</mark>.

An example of the structure:

<structure>
<exists>
<type>XXXXXXXX</type>
<is-bound/>
<mark>V1</mark>

</exits>
<exists>
<type>11110000</type>
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<not-is-bound>
<to>V1</to>
<in>N</in>

</not-is-bound>
</exits>
<particle type="234"/>

</structure>

The action part encoded in the <action> tag consists of a sequence of <action>
tags. The tag has the following attributes:

1. type: one of the following values: bind, unbind, move which determine the
type of the command: binding particles, unbinding particles and moving particles.
This attribute is obligatory.

2. par1: the variable with the stored first particle participating in the command.
This attribute is obligatory.

3. par2: the variable with the stored second particle participating in the command.
This attribute is obligatory if type is equal to unbind and the dir attribute
is absent.

4. dir: the direction in which the command operates. This attribute is obligatory
if type is equal to unbind and the par2 attribute is absent.

An example of the action part:

<actions>
<action type="bind" par1="V1" par2="V2" dir="N">
<action type="move" par1="V1" par2="V2" dir="N">
<particle type="099"/>
<action type="unbind" par1="V1" par2="V2">

</actions>

Complex definitions

The <complexes> tag contains a set of complex definitions contained in a
<complex> tag. Each <complex> tag contains a sequentially processed set of
commands that creates bonds between the particles. It has only one optional attribute:

1. id – the unique identifier of the complex. As due to the next commands in the
xml file, the complex may be changed, it is not guaranteed that the id will remain
constant

The tag <complex> consists of a sequence of <bond> tags with the following
obligatory attributes:

1. par1 – the id of the first particle participating in the bond. The particle should
be defined in the particles or programs part of the file.

2. par2 – the id of the second particle participating in the bond. The particle should
be defined in the particles or programs part of the file.
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3. dir – the direction in which two particles are bound together

An example of the complex part:

<complexes>
<complex id="123">
<bond par1="1" par2="3" dir="N"/>
<bond par1="1" par2="2" dir="S"/>

</complex>
<complex>
<bond par1="4" par2="5" dir="U"/>

</complex>
</complexes>

Photons definitions

The <photons> tag contains a set of tags: <photon>. Each tag has the following
attributes:

1. id – the unique identifier of the photon. If absent, it is chosen randomly.

2. alpha – the angle at which the photon moves in the environment space. This
attribute is obligatory.

3. energy – the energy of the photon. This attribute is obligatory.

4. x – the horizontal coordinate of the photon. This attribute is obligatory.

5. y – the vertical coordinate of the photon. This attribute is obligatory.

An example of the photon part:

<photons>
<photon id="313" alpha="3.443" energy="10"

x="100" y="200"/>
<photon alpha="443" energy="4" x="4" y="2"/>

</photons>

Multiplying definitions

The multiplying part of the file contained in the <multiply> tag consists of
commands that allow to randomly put an exact copy of the previously defined complex
or particle in the environment space. There are two tags: <multiply-complex>
and <multiply-particle> that create a copy of the complex and of the particle
respectively. Both tags have the same list of attributes and may nest the same optional
two tags.

List of attributes:

1. id – the identifier of the particle (complex) to be copied

2. multiply – the number of additional copies to be created

List of optional nested tags:
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1. <multiply-position> – sets boundaries of the space into which the copy will
be put. The boundaries are determined by the following obligatory attributes:
minx (minimal horizontal coordinate), maxx (maximal horizontal coordinate),
miny (minimal vertical coordinate), maxy (maximal vertical coordinate). If the
tag is absent the copy will be put anywhere in the environment space.

2. <multiply-velocity> – sets the range of the velocity of the created copies.
The range is determined by the following obligatory attributes: minx (the
minimal horizontal velocity), maxx (the maximal horizontal velocity), miny (the
minimal vertical velocity), maxy (the maximal vertical velocity). If the tag is
absent, velocity is set to 0.

An example of the multiplication part:

<multiply>
<multiply-complex id="313" multiply="50">

<multiply-velocity minx="-5" maxx="5" miny="0" maxy="0"/>
</multipy-complex>
<multiply-particle id="1024" multiply="34">

<multiply-position minx="10" maxx="20" miny="5" maxy="6"/>
</multiply-particle>

</multiply>

1.3.3 Settings file

Due to their possible large size and obvious redundancy, the environment settings
are not a part of the state files, but are stored in separate ones. Different settings
are distinguishes by file name. The settings folder (1.1.1) should always contain the
following file: default.xml with the default environment’s settings (tags are described
below):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE settings SYSTEM "../dtd/settings.dtd">
<settings>
<physics>

<common time="1" eac="0.01"/>
<particles prob-col-elastic="1" prob-emit-pho="0"

emaxpho="1"/>
<photons enabled="true" prob-add-to-inner="1"

prob-bind="0" prob-concatenate="0"
prob-rebound="0" prob-reflect="0"
prob-reqroup="0" prob-split="0"
prob-unbind="0"/>

<programs enable-program-rotation="true"
enable-self-mutable-programs="false"
omega="10"/>

</physics>
<chemistry>

<default-element mass="1" max-bond-count="8"
bond-mask="11111111" bond-energy="-1"/>

</chemistry>
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</settings>

The file is formed by the <settings> tag. The settings are divided into two parts:
the physical and the chemical.

Physical settings

The physical settings are encoded in the <physics> tag. The physical setting are
divided into four parts encoded in the following tags:

1. <common>, with the following attributes:

(a) time – length of time step (usually 1) – see definition on p. 45

(b) eac – activation energy – see definition on p. 44

2. <particles>, with the following attributes:

(a) prob-col-elastic – the probability of an elastic collision (real value
from 0 to 1) – see definition on p. 45

(b) prob-emit-pho – the probability of a spontaneous photon emission – see
description on p. 45

(c) emaxpho – maximal photon energy after a spontaneous emission – see
description on p. 45

3. <photons>, with the following attributes:

(a) enabled – possible values are: true (default) or false. If set to false
the photons are not calculated during the simulation – thus, the total energy
of the environment decreases.

(b) prob-reflect – the probability of an elastic collision between the particle
and the photon – see description on p. 46

(c) prob-rebound – the probability of rebounding of the particle hit by the
photon from an adjoining particle – see description on p. 46

(d) prob-bind – the probability of creating a horizontal bond between the hit
particle and the adjoining particles – see description on p. 46

(e) prob-unbind – the probability of removing the horizontal bond between
the hit particle and the bound particles – see description on p. 47

(f) prob-concatenate – the probability of creating a vertical bond between
the hit particle and the adjoining particles – see description on p. 47

(g) prob-split – the probability of removing the vertical bond between the
hit particle and the bound particles – see description on p. 47

(h) prob-add-to-inner – the probability of photon absorption – see
description on p. 48

4. <programs>, with the following attributes:

(a) enable-program-rotation – possible values are: true (default) or
false. If set to true the program rotates after failure – see description on
p. 61.
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(b) enable-self-mutable-programs– possible values are: true (default)
or false. If set to true the program may change itself during execution
(i.e. may change its own complex).

Chemical settings

The chemical settings are encoded in the <chemistry> tag. The tag consists of one
<default-element> tag which sets attributes common to all particle types, and a
sequence of <element> tags which sets the particle type specific properties.

The <default-element> tag has the following attributes:

1. mass – sets the particles mass

2. max-bond-count – sets the maximal possible number of bonds that particle
can form. Possible values are from 0 to 8.

3. bond-mask – binary value from 00000000 to 11111111. Each bit in mask encodes
the following direction: N, NE, SE, S, SW, NW, U, Drespectively. Value 1 at each
position depicts the possibility of creating a bond in the specified direction. E.g.
00110011 means that particles can form bonds in directions: SE, S, U , D.

4. bond-energy – the energy of the bond between the particles. The real number
is usually negative.

The <element> tag, has the same attributes with additional type that indicates
the type of particle related to it. Definitions for specified particle type have higher
priority than default ones (tag overrides default definition). Through the nested
<bond-energy> tags it is also possible to define the energy of the bonds between the
specified particles. The <bond-energy> tag has two attributes:

1. to – type of a particle to which the current one creates a bond

2. energy – the energy of the bond. The real number is usually negative.

1.4 Preparing experiment

The experiment definition file can be viewed as a macro which automatises some ac-
tivities usually performed by the environment operator, during long-term experiments.
After the file is loaded, the environment finds and loads its state according to the in-
formation encoded in the main tag of the file (see below). Each step of the simulation
is connected with saving additional information in specified files.

The main tag: <experiment>, has the following attributes:

1. name – the name of the experiment, the name is displayed in the application’s
title bar,

2. start-file – the localisation of the file with an initial state of the experiment,

3. find-last-save – one of two values: true and false. If set to false, the
experiment always starts with the state specified in the start-file attribute.
If set to true (default), the environment tries to find the most accurate version
of the simulation state in the experiment work directory (see below), and only in
case of failure, loads the file specified in the start-file attribute.
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The nested attributes allow to set the information that will be saved after each step
of the simulation:

1. <basedir> – sets the experiment base directory where additional data will be
saved. E.g. <basedir>c:\experiment\</basedir>

2. <bin> – an optional tag, connected with storing the simulation state as a binary
file (1.3.1). The tag has the following attributes:

(a) dir – sets the directory location (relative to the base directory) where the
environment state will be saved.

(b) period – sets the frequency of storing data.

E.g.: <bin dir="bin" period="10"/> means that after each 10 time steps,
the simulation state will be stored in a binary file. The name of the file always
consists of the number describing the current time step (e.g. 0000010.unv etc.).

3. <xml> – same as the <bin> tag, but connected with an xml files (1.3.2)

4. <gfx> – similar to the <bin> tag, but connected with storing screenshots in JPG
format. Besides the attributes described in the <bin> tag, it has two additional
attributes:

(a) quality – an integer number from 0 to 99, sets the quality of the graphics
– greater values means better quality but also larger files.

(b) zoom – an integer number from 1 to 8, which sets the size of a particle in the
saved picture. Value 1 means, that each particle will be drawn as a one pixel
dot, values from 2 to 4 mean, that each particle will be drawn as a circle,
and values above 5 mean, that each particle will be drawn as a heaxagon.

5. <log> – similar to <bin>, but connected with storing detailed statistics during
the experiment. The tag has the same attributes as <bin>, but also nests the
set of <detail> tags for each type of log to be stored. The <detail> tag has
the following attributes:

(a) file – the name of the file in which the current statistics will be stored

(b) type – the type of the statistics. Possible values are:

i. cmpl-count – the number of complexes,

ii. cmpl-len-min – the minimal size of complex,

iii. cmpl-len-max – the maximal size of complex,

iv. cmpl-len-av – the average size of complex,

v. cmpl-len-dev – the standard deviation of the average size of
complex,

vi. en-ecb – overall complex bond energy,

vii. ek – overall kinetic energy,

viii. ei – overall internal energy,

ix. en-pho – the overall energy of photons,

x. et – total energy (the value should remain constant, any change
indicates a serious error in the environment),
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xi. par-count – the number of particles (the value should remain
constant, any change indicates serious error in the environment),

xii. pho-count – the number of photons,

xiii. prog-executed-count – the number of programs that were exe-
cuted by the environment,

xiv. prog-completed-count – the number of programs that were
executed by the environment and succeeded,

xv. prog-completed-lstlisting – the full lstlistings of all programs
that succeeded,

xvi. prog-failed-lstlisting – the full lstlistings of all programs that
failed.

The logs are stored in a pseudo xml file (without the root tag) which consists of
a sequence of <entry> tags. Each <entry> consists of two other tags:

(a) cycle – the number of cycle

(b) value – value to be stored. Integer/real number or program listing (i.e.
<program> tag – see 1.3.2).

An example of the experiment definition file:

<?xml version="1.0"?>
<!DOCTYPE experiment PUBLIC

"-//DIGIHIVE//DTD EXPERIMENTS 1.0//EN"
"experiments.dtd">

<experiment name="Universal constructor"
start-file="c:\exp\constr\cnstr.xml"
find-last-save="true">
<basedir>c:\exp\constr\</basedir>
<xml dir="xml" period="1"/>
<gfx dir="pic" period="1" quality="75" zoom="8"/>
<work dir="work" period="1"/>
<log dir="log" period="1">

<detail type="cmpl-len-max" file="cmpl-len-max"/>
<detail type="cmpl-len-min" file="cmpl-len-min"/>
<detail type="en-ei" file="en-ei"/>
<detail type="en-et" file="en-et"/>
<detail type="prog-executed-count"

file="prog-executed-count"/>
<detail type="prog-completed-lstlisting"

file="prog-completed-lstlisting"/>
<detail type="pho-count" file="pho-count"/>

</log>
</experiment>

118



Appendix B

Sample source file

This chapter contains a sample state file: “snowflake.xml” which contains data for the
experiment described in Sect. 6.1.1.

2.1 Snowflake.xml listing

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE universum PUBLIC "-//DIGIHIVE//DTD UNIVERSUM 1.0//EN"

"http://www.swarm.eti.pg.gda.pl/dtd/universum.dtd">
<universum ccn="0" width="100" height="100" >

<settings>
<settings-common time="1.00" eac="0.01" />
<settings-particles prob-col-elastic="1.0"

emaxpho="1.0" prob-emit-pho="0.05" />
<settings-photons enabled="true" prob-reflect="0.33"

prob-rebound="0.0" prob-bind="0.0" prob-unbind="0.0"
prob-reqroup="0.00" prob-concatenate="0.0"
prob-split="0.0" prob-add-to-inner="1.0"/>

<settings-programs enable-self-mutable-programs="true" />
</settings>
<particles>

<particle type="0" id="1" ei="10">
<velocity x="0.1" y="-0.2"/>

</particle>
<particle type="0" id="2" ei="10">

<velocity x="0.1" y="0.2"/>
</particle>
<particle type="0" id="3" ei="10">

<velocity x="0.4" y="-0.2"/>
</particle>
<particle type="255" id="4" ei="10">

<velocity x="0.4" y="-0.2"/>
</particle>

</particles>
<programs>
<!-- Program binding two particles and after that

deactivating itself by unbind from itself
a particle from the bottom of the stack which
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marks beginning of the program -->
<program id="3">

<position x="70" y="10"/>
<velocity x="0.3" y="0.41"/>
<!-- Searching for two unbind particles -->
<search>

<structure>
<exists>

<type>00000000</type>
<not-isbound/>
<mark>V1</mark>

</exists>
<exists>

<type>00000000</type>
<not-isbound/>
<mark>V2</mark>

</exists>
<!-- Searching for particle marking

beginning of the program -->
<exists>

<type>11110000</type>
<isbound>

<in>U</in>
</isbound>
<mark>V3</mark>

</exists>
<exists>

<type>00110000</type>
<isbound>

<to>V3</to>
<in>D</in>

</isbound>
<mark>V4</mark>

</exists>
<exists>

<type>10001011</type>
<isbound>

<to>V4</to>
<in>D</in>

</isbound>
<mark>V5</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<to>V5</to>
<in>D</in>

</isbound>
</exists>

</structure>
</search>
<actions>
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<action type="bind" par1="V1" par2="V2" dir="S"/>
<action type="unbind" par1="V3" par2="V4" dir="U"/>
<action type="bind" par1="V3" par2="V4" dir="NW"/>

</actions>
</program>
<!-- Program building the ring of particles -->
<program id="4">

<position x="40" y="80"/>
<velocity x="-0.3" y="-0.41"/>
<!-- Recognizing a pair of particles being a part of

the ring to which another particle can be bind -->
<search>

<structure>
<exists>

<type>00000000</type>
<isbound>

<in>SW</in>
</isbound>
<mark>V1</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<to>V1</to>
<in>NE</in>

</isbound>
<mark>V3</mark>

</exists>
<!-- Checking additional conditions that the

pair of particles belongs to the ring -->
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V1</to>
<in>NW</in>

</isadjacent>
</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V1</to>
<in>S</in>

</isadjacent>
</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V1</to>
<in>SW</in>

</isadjacent>
</exists>
<exists>
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<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V1</to>
<in>SE</in>

</isadjacent>
</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V1</to>
<in>N</in>

</isadjacent>
</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V3</to>
<in>SE</in>

</isadjacent>
</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V3</to>
<in>NE</in>

</isadjacent>
</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V3</to>
<in>S</in>

</isadjacent>
</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V3</to>
<in>NW</in>

</isadjacent>
</exists>
<!-- Searching for the unbound particle -->

<exists>
<type>00000000</type>
<not-isbound/>
<mark>V2</mark>

</exists>
</structure>

</search>
<!-- Binding the particle to the ring -->
<actions>

<action type="bind" par1="V1" par2="V2" dir="SE"/>
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</actions>
</program>
<!-- Program closing the ring by checking the existence

of 3 bound particles and one particle belonging
to the same complex adjacent but not bound to them.

Hint: checking of 4 particles (3 and 1) prevent from
later erroneous recognition -->

<program id="6">
<position x="20" y="40"/>
<velocity x="-0.3" y="-0.31"/>
<search>

<structure>
<exists>

<type>00000000</type>
<isbound>

<in>NW</in>
</isbound>
<mark>V1</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<to>V1</to>
<in>SE</in>

</isbound>
<mark>V2</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<to>V2</to>
<in>NE</in>

</isbound>
<mark>V5</mark>

</exists>
<exists>

<type>00000000</type>
<isadjacent>

<to>V5</to>
<in>N</in>

</isadjacent>
<mark>V6</mark>

</exists>
<exists>

<type>00000000</type>
<not-isbound>

<in>N</in>
</not-isbound>
<mark>V6</mark>

</exists>
<!-- Searching for unbound particle 11111111 -->
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<exists>
<type>11111111</type>
<not-isbound></not-isbound>
<mark>V11</mark>

</exists>
</structure>

</search>
<!-- Closing the ring and binding the particle 11111111

into the center of the ring, it marks the completion
of the ring -->

<actions>
<action type="bind" par1="V5" par2="V6" dir="S"/>
<action type="bind" par1="V5" par2="V11" dir="SE"/>

</actions>
</program>
<!-- Two programs building the lateral branch to the ring.

The first program binds to the ring a stack of two
particles. The second program continue building of
the branch -->

<!-- First program -->
<program id="7">

<position x="60" y="20"/>
<velocity x="-0.3" y="-0.6"/>
<!-- Recognition of a particle belonging to the ring -->
<search>

<structure>
<exists>

<type>00000000</type>
<isbound>

<in>NW</in>
</isbound>
<mark>V12</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<in>NE</in>
</isbound>
<mark>V12</mark>

</exists>
<exists>

<type>11111111</type>
<isadjacent>

<to>V12</to>
<in>S</in>

</isadjacent>
</exists>
<!-- Searching for two unbound particles -->
<exists>

<type>00000000</type>
<not-isbound/>
<mark>V13</mark>
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</exists>
<exists>

<type>00000000</type>
<not-isbound/>
<mark>V14</mark>

</exists>
</structure>

</search>
<!-- Binding to the ring the vertical stack of two

particles -->
<actions>

<action type="bind" par1="V13" par2="V12" dir="N"/>
<action type="bind" par1="V13" par2="V14" dir="U"/>

</actions>
</program>
<!-- Second program -->
<program id="8">

<position x="75" y="20"/>
<velocity x="-0.3" y="-0.6"/>
<!-- Recognition of the stack of two of particles bound

horizontally to the ring by the action of previous
program. -->

<search>
<structure>

<exists>
<type>00000000</type>
<isbound>

<in>N</in>
</isbound>
<mark>V1</mark>

</exists>
<exists>

<type>xxxxxxxx</type>
<isbound>

<to>V1</to>
<in>D</in>

</isbound>
<mark>V5</mark>

</exists>
<!-- Searching for two unbound particles -->
<exists>

<type>00000000</type>
<not-isbound/>
<mark>V3</mark>

</exists>
<exists>

<type>00000000</type>
<not-isbound/>
<mark>V4</mark>

</exists>
</structure>
<!-- Checking for nonexistence of stack
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of 4 particles. -->
<not-structure dir="NE" particleId="9">

<exists>
<type>xxxxxxxx</type>
<isbound>

<to>V5</to>
<in>D</in>

</isbound>
<mark>V6</mark>

</exists>
<exists>

<type>xxxxxxxx</type>
<isbound>

<to>V6</to>
<in>D</in>

</isbound>
<mark>V7</mark>

</exists>
<exists>

<type>xxxxxxxx</type>
<isbound>

<to>V7</to>
<in>D</in>

</isbound>
</exists>

</not-structure>
</search>
<!-- Adding one particle to the branch and enlarging

the stack by one particle. -->
<actions>

<action type="bind" par1="V1" par2="V3" dir="S"/>
<action type="bind" par1="V3" par2="V4" dir="U"/>
<action type="unbind" par1="V1" par2="V5"/>
<action type="bind" par1="V4" par2="V5" dir="U"/>

</actions>
</program>
<!-- Program recognizing the end of the branch (stack of four

particles) and initializing construction of the lateral
branch. Initialization is by binding stack of two particles
to stack of four particles marking the end of branch. -->

<program id="9">
<position x="11" y="36"/>
<velocity x="0.8" y="-0.6"/>
<!-- Recognition of the stack pf [articles bound

to a particle in direction N. -->
<search>

<structure>
<exists>

<type>00000000</type>
<isbound>

<in>N</in>
</isbound>
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<mark>V1</mark>
</exists>
<!-- Additional checking -->
<exists>

<type>00000000</type>
<not-isbound>

<in>NW</in>
</not-isbound>
<mark>V1</mark>

</exists>
<exists>

<not-type>xxxxxxxx</not-type>
<isadjacent>

<to>V1</to>
<in>N</in>

</isadjacent>
</exists>
<!-- Continuation of recognition -->
<exists>

<type>00000000</type>
<isbound>

<to>V1</to>
<in>D</in>

</isbound>
<mark>V5</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<to>V5</to>
<in>D</in>

</isbound>
<mark>V6</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<to>V6</to>
<in>D</in>

</isbound>
<mark>V7</mark>

</exists>
<exists>

<type>00000000</type>
<isbound>

<to>V7</to>
<in>D</in>

</isbound>
</exists>
<!-- Searching for two unbound particles -->
<exists>

<type>00000000</type>
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<not-isbound/>
<mark>V13</mark>

</exists>
<exists>

<type>11111111</type>
<not-isbound/>
<mark>V14</mark>

</exists>
</structure>

</search>
<actions>

<action type="bind" par1="V1" par2="V13" dir="NE"/>
<!-- Binding the particle V14 (11111111) will

prevent from later recognition of the
stack by the same program. -->

<action type="bind" par1="V13" par2="V14" dir="U"/>
</actions>

</program>
</programs>
<multiply>

<!-- Making copies of programs -->
<multiply-complex id="4" multiply="8">

<multiply-velocity miny="-1.0" maxy="1.0"
minx="-1.0" maxx="1.0"/>

</multiply-complex>
<multiply-complex id="6" multiply="8">

<multiply-velocity miny="-1.0" maxy="1.0"
minx="-1.0" maxx="1.0"/>

</multiply-complex>
<multiply-complex id="7" multiply="8">

<multiply-velocity miny="-1.0" maxy="1.0"
minx="-1.0" maxx="1.0"/>

</multiply-complex>
<multiply-complex id="8" multiply="8">

<multiply-velocity miny="-1.0" maxy="1.0"
minx="-1.0" maxx="1.0"/>

</multiply-complex>
<multiply-complex id="9" multiply="8">

<multiply-velocity miny="-1.0" maxy="1.0"
minx="-1.0" maxx="1.0"/>

</multiply-complex>
<multiply-particle multiply="300" id="3">

<multiply-velocity miny="-1.0" maxy="1.0"
minx="-1.0" maxx="1.0"/>

</multiply-particle>
<multiply-particle multiply="200" id="4">

<multiply-velocity miny="-0.5" maxy="0.5"
minx="-0.5" maxx="0.5"/>

</multiply-particle>
</multiply>

</universum>
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Appendix C

List of commands

This chapter contains a full list of the DigiHive environment commands. In the list, the
following notation is used:

• “any” stands for (eight “ ”)

• t stands for t1t2t3t4t5t6t7t8

• t1, . . ., t8 ∈ {0, 1, } denote particle type

• v ∈ {V1, . . ., V15 } and vv ∈ {V0, . . ., V16 } denote variables

• d ∈ {N, NE, SE, S, SW, NW, U, D} denotes direction
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No Name Prolog
Specification encoding

type relation to in mark

1 exists t is bound to v in d, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isbound(VV,V,d).

1 10 11 11 1

2 exists t is bound to v in d hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isbound(V0,V,d),
unref(V0).

1 10 11 11 0

3 exists t is bound to v, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isbound(VV,V,_).

1 10 11 00
01
10

1

4 exists t is bound to v hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isbound(V0,V,_),
unref(V0).

1 10 11 00
01
10

0

5 exists t is bound in d, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
isbound(VV,_,d).

1 10 00
01
10

11 1

6 exists t is bound in d hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
isbound(V0,_,d),
unref(V0).

1 10 00
01
10

11 0

7 exists t is bound, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
isbound(VV,_,_).

1 10 00
01
10

00
01
10

1

8 exists t is bound hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
isbound(V0,_,_),
unref(V0).

1 10 00
01
10

00
01
10

0

9 exists t not is bound to v in d, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
not(isbound(VV,V,d)).

1 00 11 11 1

10 exists t not is bound to v in d hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
not(isbound(V0,V,d)),
unref(V0).

1 00 11 11 0
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No Name Prolog
Specification encoding

type relation to in mark

11 exists t not is bound to v, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
not(isbound(VV,V,_)).

1 00 11 00
01
10

1

12 exists t is not bound to v hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
not(isbound(V0,V,_)),
unref(V0).

1 00 11 00
01
10

0

13 exists t not is bound in d, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
not(isbound(VV,_,d)).

1 00 00
01
10

11 1

14 exists t not is bound in d hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
not(isbound(V0,_,d)),
unref(V0).

1 00 00
01
10

11 0

15 exists t not is bound, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
not(isbound(VV,_,_)).

1 00 00
01
10

00
01
10

1

16 exists t not is bound hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
not(isbound(V0,_,_)),
unref(V0).

1 00 00
01
10

00
01
10

0

17 exists t is adjacent to v in d, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isadjacent(VV,V,d).

1 01 11 11 1

18 exists t is adjacent to v in d hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isadjacent(V0,V,d),
unref(V0).

1 01 11 11 0

19 exists t is adjacent to v, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isadjacent(VV,V,_).

1 01 11 00
01
10

1

20 exists t is adjacent to v hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isadjacent(V0,V,_),
unref(V0).

1 01 11 00
01
10

0
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No Name Prolog
Specification encoding

type relation to in mark

21 exists t is adjacent in d, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
isadjacent(VV,_,d).

1 01 00
01
10

11 1

22 exists t is adjacent in d hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
isadjacent(V0,_,d),
unref(V0).

1 01 00
01
10

11 0

23 exists t, mark vv hastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),

1 11 00
01
10
11

00
01
10
11

1

24 exists t hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
unref(V0).

1 11 00
01
10
11

00
01
10
11

1

25 exists not t is bound to v in d, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isbound(VV,V,d).

0 10 11 11 1

26 exists not t is bound to v in d if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isbound(V0,V,d),
unref(V0).

0 10 11 11 0

27 exists not t is bound to v, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isbound(VV,V,_).

0 10 11 00
01
10

1

28 exists not t is bound to v if t 6= any:
hastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isbound(V0,V,_),
unref(V0).

0 10 11 00
01
10

0

29 exists not t is bound in d, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
isbound(VV,_,d).

0 10 00
01
10

11 1
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30 exists not t is bound in d if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
isbound(V0,_,d),
unref(V0).

0 10 00
01
10

11 0

31 exists not t is bound, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
isbound(VV,_,_).

0 10 00
01
10

00
01
10

1

32 exists not t is bound if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
isbound(V0,_,_),
unref(V0).

0 10 00
01
10

00
01
10

0

33 exists not t not is bound to v in d, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
not(isbound(VV,V,d)).

0 00 11 11 1

34 exists not t not is bound to v in d if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
not(isbound(V0,V,d)),
unref(V0).

0 00 11 11 0

35 exists not t not is bound to v, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
not(isbound(VV,V,_)).

0 00 11 00
01
10

1

36 exists not t is not bound to v if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
not(isbound(V0,V,_)),
unref(V0).

0 00 11 00
01
10

0

37 exists not t not is bound in d, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
not(isbound(VV,_,d)).

0 00 00
01
10

11 1
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38 exists not t not is bound in d if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
not(isbound(V0,_,d)),
unref(V0).

0 00 00
01
10

11 0

39 exists not t not is bound, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
not(isbound(VV,_,_)).

0 00 00
01
10

00
01
10

1

40 exists not t not is bound if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
not(isbound(V0,_,_)),
unref(V0).

0 00 00
01
10

00
01
10

0

41 exists not t is adjacent to v in d, mark vv if t = any:
empty(VV,V,d),
isunique(VV).
if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isadjacent(VV,V,d).

0 01 11 11 1

42 exists not t is adjacent to v in d if t = any:
empty(V0,V,d),
unref(V0).
if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isadjacent(V0,V,d),
unref(V0).

0 01 11 11 0

43 exists not t is adjacent to v, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
any(V),
isadjacent(VV,V,_).

0 01 11 00
01
10

1

44 exists not t is adjacent to v if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
any(V),
isadjacent(V0,V,_),
unref(V0).

0 01 11 00
01
10

0
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45 exists not t is adjacent in d, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),
isadjacent(VV,_,d).

0 01 00
01
10

11 1

46 exists not t is adjacent in d if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
isadjacent(V0,_,d),
unref(V0).

0 01 00
01
10

11 0

47 exists not t, mark vv if t 6= any:
nhastype(VV,t1,t2,t3,t4,t5,t6,t7,t8),
isunique(VV),

0 11 00
01
10
11

00
01
10
11

1

48 exists not t if t 6= any:
nhastype(V0,t1,t2,t3,t4,t5,t6,t7,t8),
unref(V0).

1 11 00
01
10
11

00
01
10
11

1

135



No Name Prolog
Specification encoding

unused type to in

49 bind v to vv bind(V,VV,_). 0000
. . .
1111

00 1 0

50 bind v to vv in d bind(V,VV,d). 0000
. . .
1111

00 1 1

51 move v to vv move(V,VV,_). 0000
. . .
1111

10 1 0

52 move v to vv in d move(V,VV,d). 0000
. . .
1111

10 1 1

53 unbind v from vv unbind(V,VV,_). 0000
. . .
1111

01 1 0

54 unbind v in d unbind(_,_,d). 0000
. . .
1111

01 0 1

55 unbind v from vv in d unbind(V,VV,d). 0000
. . .
1111

01 1 1
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Appendix D

Self-organisation in the Universum
environment

This chapter describes the results of a self-organization experiment [171] performed
in the Universum environment (4.3.3), the ancestor of the DigiHive. The experiment’s
conclusions were a direct inspiration to create the assumptions of the new environment.

4.1 Simulation experiments

Self-organization experiments started from the initial state of the system consisting of
over 60000 five bit particles positioned randomly on a 1000×1000 lattice (32 possible
5 bit strings multiplied by 2048), and were run for 35000 steps.

4.1.1 Environment settings

Environment probabilities were set as shown in table D.1.

N P (N) Probability of
1 0.20 Particle-particle inelastic collision
2 1.00 Particle-photon inelastic collision
3 0.27 Rebounding particles
4 0.10 Setting bond between particles
5 0.06 Resetting bond
6 0.01 Changing order of atoms
7 0.30 Concatenating particles
8 0.01 Splitting particle
9 0.25 Increase internal energy of particle

10 0.05 Emission of photon
11 0.50 Change of orientation

Table D.1: Environment probabilities, P (N)

During each inelastic collision a photon is created so higher values of probability of
particle-particle inelastic collision, P (1), leads to more active environment. A similar
effect has the probability of particle-photon inelastic collision, P (2). P (2) = 1 means
that every particle-photon collision causes one of the reactions described in 4.3.3 with
probabilities P (3), P (4), . . . , P (9).
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Higher values of probability of setting a bond between the particles, P (4), yields to a
creation of bigger complexes. The probability of resetting bond, P (5) has the opposite
effect. In the experiment, the bond creation occurs more often than its destruction
(P (4)/P (5) ≈ 1.66).

Most important for self-organization matters, are the probabilities which sets
activities, that affect particle‘s functions. The relatively high value of probability of
concatenating particles, P (7), causes the average function length to grow and the total
number of particles decreases. The probability of splitting particle, P (8), by allowing
to split the particle‘s atoms string in random position, causes a destruction of the
existing particle‘s function. Particle splitting together with particle concatenation is
the source of functional interaction diversity. The probability of changing the order of
atoms, P (6), allows the function to be changed in a random way.

The probability of increasing internal energy, P (9), allows photon conversion into
the particle‘s internal energy. Internal energy is one of the energy sources for functions
realisation (changing of bond energy is another source). The relatively high value of
P (9) helps the emerged functions more often affects the environment‘s space. The
probability of photon emission, P (10) sets the probability of creating photon from the
particle‘s internal energy, at the end of each time step. The low value of P (10) yields
to accumulating internal energy for a longer period of time.

The probability of change of orientation, P (11), allows changing the particle‘s
orientation at the end of each time step. Orientation defines the direction in which
particle function operates. It has been noticed that such variable particle‘s orientation,
noticeably helps completing some task, especially with constructing sophisticated
spatial structures of particles.

4.1.2 Simulation

Five simulation experiments were realized, each starting with different kinetic energy
of particles. They were run for over 30000 time steps, allowing the system to evolve
from the initial state to some kind of equilibrium.

Total environment energy is, at the beginning of simulation, a sum of total kinetic
energy and total atoms’ bond energy. Later, during the course of simulation, the energy
is distributed over kinetic energy, atoms’ bond energy, particles’ bond energy and
particles’ internal energy, however total energy remains constant.

All simulations were also repeated in an environment with functional interaction
disabled. This enabled to see the influence of functional interactions on the evolution
of the system,

4.2 Results

In all of the considered simulations, the total number of particles decreased from 65536
to about 6500–7000 after 34000 time steps and their mass increased (Fig. D.1). After
about 10000–15000 time steps, particles functions influence become most important for
this aspect of environment evolution and as a result both kind of environment have
different attractors.

The number of photons grew, initially reaching its maximum at approximately 400th
time step and then gradually decreased to some constant value. Such behaviour is a
result of a huge number of particle collisions during the first time steps, and smaller
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Figure D.1: Average particle mass. In this and in the rest of the figures the continuous
lines depict simulation results with the functional activity turned on, and the dotted
line with the activity turned off

number of particles and collisions later. The differences between systems with functional
activity set on and off were not distinct.

Complexes numbers, as shown in the figure D.2, changed in the way similar to
photons numbers. Their number reached its maximum after about 200–600 time steps,
then decreased quickly. During the first time steps, the probability of creating a new
complex is relatively high, due to many unbounded adjoining particles. When a large
portion of particles becomes a part of complexes, the new complexes are hardly ever
created (creating a bond reaction during photon-particle collision usually changes the
existing complexes’ length, as adjoining particles that are still unbounded are very
seldom). On the other hand, environment settings yields to particle concatenation
rather than splitting them, so there is no source of new unbounded particles.
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Figure D.2: Complexes number

If functional activities are turned off, complexes number stabilises itself after
about 15000 time steps, regardless of initial settings, and remains approximately
constant (about 150–250 complexes). Functional activities however, noticeably changes
the complexes number evolution – the maximum values are higher than about 500
complexes and, like particles number, yields to different values in the equilibrium (from

139



500 for higher energy to 900 for the lowest one).
The average complex length, presented in the figure D.3, shows the most visible

functional activities’ influence on the environment state. If functional activities are
turned off the average complex length reaches its maximum after 400 (highest energy)
to 1400 (lowest energy) time steps, then decreases to about 2–2.1 particles per complex.
Otherwise, the average complex length rises and stabilizes itself after about 2000 steps,
at a higher level: from 2.4 to 2.7 particles per complex.
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Figure D.3: Average complex length

4.2.1 Emerged functions

During simulations, the length of particles grew which resulted in more complicated
functions. This is illustrated in Figure D.4 showing the average length of particles
coding completed function. The presented curve depicts the average length of particles
which function was executed in a given time step averaged in gate of length equal 100
time steps.
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Figure D.4: Average completed programs length (particles string length).

During the first few hundred time steps, the emerged function are only capable of
setting new bonds between the particles. This is because this kind of function is coded
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by short strings 1 so it can emerge after a few time steps. In fact it appeared even after
4-5 steps, when a particle with atom strings 10010 (according to section 4.1 there are
2048 of these particles at the beginning of the simulation) concatenates with any other
particle. This simplest function activity noticeably affects the environment evolution.

After about 300-500 time steps, functions become slightly more complex. The new
activity, however, does not affect the environment. Mostly, the new atom strings are
not interpreted as valid commands (e.g. string 11101 does not encode any command),
the new commands search space around the particle but usually ignore the results
or are interpreted as a jump to a non existing part of functions etc. Occasionally, new
commands present more interesting behaviour, like an example function which emerged
at the 364th time step removing the bond to the particle which is left of it, then sets
bond with the particle which is above it.

During the next steps, particle strings became longer, but the effect of greater length
is reduced due to no correlated activity of consecutive commands. As an example: the
function which emerged at the 8123rd time step of the simulation has 28 commands,
but only 6 of them are executed. This function removes any bond to the particle left of
it, then rotates itself left, then compares its atom string to 515 and (irrespectively of
the result) sets the bond again to the previously unbounded particle. Then the function
removes any bond between the particle one square below it and the particle one square
down and one square west of it (note that depending on the particle‘s orientation
“down” could mean any direction, but “west” always describes the same square). The
next command is interpreted as a jump 381 commands backwards and – as there are
only 5 commands before – terminates execution.

4.3 Conclusion

The presented simulation experiments in an artificial environment has shown the self-
organization phenomena in the form of emerging functions of growing complexity.
Particle function activities manifested via yielding to different intermediate states of
the system and different states in the equilibrium, so functions affected the environment
dynamic at another qualitative level.

The functions that emerged during the simulation have not taken full advantage of
the language they are encoded in. Especially, no self-replicating system emerged nor
any spectacular spatial structure.

Several problems have been noticed with particle’s language features that hampered
the development of more complex functions (discussed in work [169]):

1. Conditional commands. The conditional commands are realized via conditional
jumps. The serious problem is that the jump destination must be determined in
a very precise way. E.g. in the following code:

CS 0, 1110
JT 3
MOS 1
END
MOS 2

depending on the result of CS 0, 1110 the MOS 1 or MOS 2 will be executed.
Please note that any change in the argument of JF command (from −256 to 255)

1atom string: 10010 xxxxx, where x denotes 0 or 1, coding setting bond operation
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lead to error, or more likely will terminate the program execution (as the result of
a jump to a non existing command). In the experiment, the emerged conditional
commands works only as the conditional program terminating.

2. Program loop. Based on environment concepts, any complex behaviour needs
some forms of working program loops. In the environment, loops are realized via
jump command (both conditional and unconditional) into the precisely chosen
part of the program. Spontaneous emergence of valid program loops is then very
improbable because of the same reasons as described earlier (during conditional
commands).

3. Structure recognition. This basic functionality is realized via a program loop
searching through the program activity area Ω. An example of such a loop was
presented in the program on p. 41, the working part:

SHC
SCN
CS 0, 1110
JF -2

Because program loops doesn’t exist and the comparative function works
improperly, the searching through the activity area wasn’t observed. It has been
reduced to simply checking the current square and to commands that terminates
programs if some condition were (or were not) fulfilled.

4. Marking the places. Thanks to PS, it is possible to remember up to 1024 different
squares. Any further reference to such square needs to use exactly the same
argument as given for PS. E.g. the following sequence PS 535; MOS 536 works
well, but the PS 535; MOS 536 does not. In randomly generated programs, the
same argument values for different commands almost never occurred.

5. Command encoding. The encoding algorithm is very vulnerable to any changes
in the encoding string (the sequence of atoms). Because every command may be
encoded by a different number of data (a different number of atoms), every small
change may lead to unpredictable changes in the program’s behaviour (change of
one command type may change the interpretation of the whole encoding string)

Functional activities, by recognising particular particles and complexes in nearby
squares and selectively creating or removing bonds, concatenating, splitting, changing
atoms or just moving particles, are able to affect the environment in a very sophisticated
manner (e.g. it is possible to simulate a system in which the self-replication ability
emerges from these low-level rules). This level of organization tightly depends on
the possibility of effectively finding of particular particles or complexes. The above
described problems with the particle’s language have shown that the probability of
spontaneously creating a particle that manifests this kind of behaviour using an existing
language is very low.
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[97] M. Komosinski. Framsticks: A Platform for Modeling, Simulating, and Evolving
3D Creatures. In Artificial life models in software, pages 37–66. Springer, 2005.

[98] S. Koshizuka, A. Nobe, and Y. Oka. Numerical analysis of breaking waves using
the moving particle semi-implicit method. International Journal for Numerical
Methods in Fluids, 26(7):751–769, 1998.

[99] Z. Kowalczuk and M. Czubenko. Interactive Cognitive-Behavioral Decision
Making System. In L. Rutkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, and
J.M. Zurada, editors, Artificial Intelligence and Soft Computing, Part II: 10th
International Conference, ICAISC 2010, Zakopane, Poland, June 13-17, 2010,
Part II Proceedings, volume 6114 of Lecture Notes in Artificial Inteligence, pages
517–523. Springer, 2010.

[100] J.R. Koza, F.H. Bennett III, F. Bennett, D. Andre, and M. Keane. Genetic
Programming III: Automatic programming and automatic circuit synthesis.
Morgan Kaufmann, 1999.

[101] J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic programming IV. Kluwer Academic Publishers, 2003.

[102] C.G. Langton. Self-reproduction in cellular automata. Physica D: Nonlinear
Phenomena, 10(1-2):135–144, 1984.

[103] Christopher G. Langton. Artificial Life: Proceedings of an Interdisciplinary
Workshop on the Synthesis and Simulation of Living Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[104] J. Lee, S. Adachi, and F. Peper. Reliable self-replicating machines in
asynchronous cellular automata. Artificial Life, 13(4):397–413, 2007.

[105] R.E. Lenski, C. Ofria, T.C. Collier, and C. Adami. Genome complexity,
robustness and genetic interactions in digital organisms. Nature, 400(6745):661–
664, 1999.

[106] R.E. Lenski, C. Ofria, R.T. Pennock, and C. Adami. The evolutionary origin of
complex features. Nature, 423(6936):139–144, 2003.

[107] P. Lerena and M. Courant. Bio-machines. In Proceedings of Artificial Life V,
1996.

[108] S. Li and W.K. Liu. Meshfree and particle methods and their applications.
Applied Mechanics Reviews, 55:1–34, 2002.

[109] G.R. Liu and MB Liu. Smoothed particle hydrodynamics: a meshfree particle
method. World Scientific Pub Co Inc, 2003.

149



[110] W.K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko. Reproducing kernel particle
methods for structural dynamics. International Journal for Numerical Methods
in Engineering, 38(10):1655–1680, 1995.

[111] J.D. Lohn and J.A. Reggia. Discovery of self-replicating structures using a genetic
algorithm. In 1995 IEEE International Conference on Evolutionary Computing,
pages 678–683. Citeseer, 1995.

[112] JD Lohn and JA Reggia. Automatic discovery of self-replicating structures in
cellular automata. IEEE Transactions on Evolutionary Computation, 1(3):165–
178, 1997.

[113] AH Louie. A living system must have noncomputable models. Artificial life,
13(3):293–297, 2007.

[114] L.B. Lucy. A numerical approach to the testing of the fission hypothesis. The
Astronomical Journal, 82(12):1013–1024, 1977.

[115] M.A. Ludwig. Computer viruses, artificial life, and evolution. Amer Eagle Pubns
Inc, 1993.

[116] P. Mandik. Synthetic neuroethology. Cyberphilosophy: The intersection of
philosophy and computing, pages 8–25, 2002.

[117] J. Martel and J.D.E. Young. Purported nanobacteria in human blood as calcium
carbonate nanoparticles. Proceedings of the National Academy of Sciences,
105(14):5549, 2008.

[118] H.M. Martinez. An automaton analogue of unicellularity. BioSystems, 11(2-
3):133–162, 1979.

[119] B. Mayer and S. Rasmussen. The lattice molecular automaton (lma): A
simulation system for constructive molecular dynamics. International journal
of modern physics C, 9:157–177, 1998.

[120] B. Mayer and S. Rasmussen. Dynamics and simulation of micellar self-
reproduction. Int. J. Mod. Phys, 11(4):809–826, 2000.

[121] J. Maynard Smith. The problems of biology. Oxford: Oxford Univ. Press, 1989.

[122] J. McCormack. Open problems in evolutionary music and art. Lecture Notes in
Computer Science, 3449:428–436, 2005.

[123] D.S. McKay, E.K. Gibson Jr, K.L. Thomas-Keprta, H. Vali, C.S. Romanek, S.J.
Clemett, X.D.F. Chillier, C.R. Maechling, and R.N. Zare. Search for past life on
Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science,
273(5277):924, 1996.

[124] Barry McMullin. Artificial Knowledge: An Evolutionary Approach. PhD thesis,
Department of Computer Science, University College Dublin, 1992.

[125] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation
system: a toolkit for building multi-agent systems. Santa Fe NM: Santa Fe
Institute Working Paper, pages 96–06, 1996.

150



[126] J. Monaghan. Particle methods for hydrodynamics. Computer Physics Reports,
3:71–124, 1985.

[127] JJ Monaghan. An introduction to SPH. Computer Physics Communications,
48(1):89–96, 1988.

[128] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturisation: A tool for
investigation in control algorithms. Lecture Notes in Control and Information
Sciences, pages 501–501, 1994.

[129] Edward F. Moore. Machine models of self-reproduction. In Proceedings of
Symposia in Applied Mathematics, volume 14, pages 17–33, Champaign, IL, USA,
1962. The American Mathematical Society, University of Illinois Press.

[130] K. Morita and K. Imai. A simple self-reproducing cellular automaton with shape-
encoding mechanism. In Artificial Life V: Proceedings of the Fifth International
Workshop on the Synthesis and Simulation of Living Systems, pages 489–496,
1997.

[131] S. Moss, H. Gaylard, S. Wallis, and B. Edmonds. SDML: A multi-agent language
for organizational modelling. Computational & Mathematical Organization
Theory, 4(1):43–69, 1998.

[132] G. Nicolis and I. Prigogine. Self-organization in nonequilibrium systems: From
dissipative structures to order through fluctuations. Wiley, New York, 1977.

[133] C. Nikolai and G. Madey. Tools of the trade: A survey of various agent based
modeling platforms. Journal of Artificial Societies and Social Simulation, 12(2):2,
2009.

[134] C. Ofria and C. Wilke. Avida: Evolution experiments with self-replicating
computer programs. Artificial Life Models in Software, pages 3–35, 2005.

[135] ET Olson. The ontological basis of strong artificial life. Artificial Life, 3(1):29,
1997.

[136] N. Ono and T. Ikegami. Model of self-replicating cell capable of self-maintenance.
Advances in artificial life, pages 399–406, 1999.

[137] N. Ono and T. Ikegami. Self-maintenance and self-reproduction in an abstract
cell model. Journal of Theoretical Biology, 206(2):243–253, 2000.

[138] Z. Pan and J. Reggia. Evolutionary Discovery of Arbitrary Self-replicating
Structures. Computational Science–ICCS 2005, pages 404–411, 2005.

[139] Z. Pan and J.A. Reggia. Computational discovery of instructionless self-
replicating structures in cellular automata. Artificial Life, 16(1):39–63, 2010.

[140] AN Pargellis. The spontaneous generation of digital Life. Physica D: Nonlinear
Phenomena, 91(1-2):86–96, 1996.

[141] M.T. Parker. What is Ascape and why should you care. Journal of Artificial
Societies and Social Simulation, 4(1):5, 2001.

151



[142] HH Pattee. Artificial life needs a real epistemology. In Advances in artificial life:
Third European Conference on Artificial Life, Granada, Spain, June 4-6, 1995:
proceedings, page 23. Springer Verlag, 1995.

[143] Roger Penrose. The Emperor’s New Mind. Oxford University Press, 1989.

[144] Roger Penrose. Shadows of the Mind. A search for the Missing Science of
Consciousness. Oxford University Press, 1994.

[145] J.Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing universal
computer* 1. Physica D: Nonlinear Phenomena, 97(4):335–352, 1996.

[146] Umberto Pesavento. An implementation of von neumann’s self-reproducing
machine. Artif. Life, 2(4):337–354, 1995.

[147] E. Petraglio, G. Tempesti, and J.M. Henry. Arithmetic operations with self-
replicating loops. In Collision-based computing, page 490. Springer-Verlag, 2001.

[148] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev,
136(2A):405–411, 1964.

[149] S.F. Railsback, S.L. Lytinen, and S.K. Jackson. Agent-based simulation
platforms: Review and development recommendations. Simulation, 82(9):609,
2006.

[150] DC Rapaport. The art of molecular dynamics simulation. Cambridge Univ Pr,
2004.

[151] S. Rasmussen, L. Chen, B.M.R. Stadler, and P.F. Stadler. Proto-organism
kinetics: Evolutionary dynamics of lipid aggregates with genes and metabolism.
Origins of Life and Evolution of Biospheres, 34(1):171–180, 2004.

[152] S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hindsholm. The coreworld:
Emergence and evolution of cooperative structures in a computational chemistry.
Physica D: Nonlinear Phenomena, 42(1-3):111–134, 1990.

[153] Erik Ray. Learning Xml. O’Reilly, Sebastopol, CA, USA, 2001.

[154] T. S. Ray. An approach to the synthesis of life. Artificial Life II, pages 371–408,
1991.

[155] J.A. Reggia, S.L. Armentrout, H.H. Chou, and Y. Peng. Simple systems that
exhibit self-directed replication. Science, 259(5099):1282, 1993.

[156] C.W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, pages 25–34. ACM, 1987.

[157] S. Richter and R.F. Werner. Ergodicity of quantum cellular automata. Journal
of Statistical Physics, 82(3):963–998, 1996.

[158] Tomas Rokicki, Andrew Trevorrow, Dave Greene, Jason Summers, and Tim
Hutton. Golly game of life home page. http://golly.sourceforge.net/.

152
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